Датасет и разработка инструмента учебной аналитики для извлечения проявлений студенческой агентности из текстов отзывов на МООК

Ключевые слова: МООК, учебная аналитика, студенческая агентность, тональность, униграммы, биграммы, тематическое моделирование

Аннотация

Исследование посвящено разработке способов автоматического обнаружения в текстах отзывов на МООК проявлений составляющих и источников студенческой агентности, а также описаний внутренних и внешних трансформаций, происходящих в процессе изучения МООК. Для извлечения описаний, соответствующих индивидуальным, реляционным и контекстуальным источникам студенческой агентности, сформирован датасет из 3445 англоязычных комментариев к наиболее популярным курсам по математике, представленным на платформе Udemy, а также дополнительно выделены 1787 комментариев на практикоориентированные МООК и МООК по предпринимательству для извлечения описаний внутренней и внешней трансформации у слушателей МООК. Для извлечения из текстов отзывов на МООК ключевых слов и их сочетаний предложен методологический подход, основанный на применении методов обработки естественного языка, таких как тематическое моделирование, анализ тональности и анализ частотности N-грамм. На основании этих ключевых слов и их сочетаний описаны проявления составляющих индивидуального источника студенческой агентности в виде самоэффективности, усиления чувства уверенности при решении задач и мотивации; составляющих реляционного источника в виде поддержки и сопровождения онлайн-курса со стороны тьютора с помощью быстрых ответов и хорошо структурированного учебного материала; составляющих контекстуального источника в виде предоставления возможности принимать решение при выборе альтернативных онлайн-курсов. На том же эмпирическом материале описаны проявления внутренней трансформации обучающихся как переход от преодоления страхов, неуверенности, разрешения проблем в усвоении контента МООК к пониманию цели обучения, а также проявления внешней трансформации в виде создания нового или изменения структуры существующего продукта, стартапа или бизнеса через изменение мышления.

Скачивания

Данные скачивания пока не доступны.

Литература

Ahearn L.M. (2001) Language and Agency. Annual Review of Anthropology, vol. 30, no 1, pp. 109–137. https://doi.org/10.1146/annurev.anthro.30.1.109

Alhazmi H. (2022) Detection of Students’ Problems in Distance Education Using Topic Modeling and Machine Learning. Future Internet, vol. 14, no 6, Article no 170. https://doi.org/10.3390/fi14060170

Allington R.L. (1980) Teacher Interruption Behaviors during Primary-Grade Oral Reading. Journal of Educational Psychology, vol. 72, no 3, pp. 371–377. https://doi.org/10.1037/0022-0663.72.3.371

Andre J. (2021) Can Learning Analytics Increase Agency and Transform Digital Learning? Paper presented at the conference "Digital Transformation and Higher Education: When Challenges are Opportunities" (September, 2021, Hanoi, Vietnam).

Bandura A. (1999) Social Cognitive Theory: An Agentic Perspective. Asian Journal of Social Psychology, vol. 2, no 1, pp. 21–41. https://doi.org/10.1111/1467-839x.00024

Bandura A. (1986) Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs, NJ: Prentice Hall.

Chen Y., Yu B., Zhang X., Yu Y. (2016) Topic Modeling for Evaluating Students' Reflective Writing. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge — LAK '16 (Edinburgh, UK, 2016, April 25–29). http://dx.doi.org/10.1145/2883851.2883951

Chen X., Zou D., Cheng G., Xie H. (2020) Detecting Latent Topics and Trends in Educational Technologies over Four Decades Using Structural Topic Modeling: A Retrospective of All Volumes of Computers & Education. Computers & Education, vol. 151, July, Article no 103855. https://doi.org/10.1016/j.compedu.2020.103855

Copur-Gencturk Y., Choi H., Cohen A. (2022) Investigating Teachers’ Understanding through Topic Modeling: A Promising Approach to Studying Teachers’ Knowledge. Journal of Mathematics Teacher Education, vol. 26, pp. 281–302. https://doi.org/10.1007/s10857-021-09529-w

Devi S., Dhavale C., Moharkar L., Khanvilkar S. (2022) Impact of Online Education and Sentiment Analysis from Twitter Data Using Topic Modeling Algorithms. International Journal of Applied Sciences and Smart Technologies, vol. 4, no 1, pp. 21–34. https://doi.org/10.24071/ijasst.v4i1.4637

Dewey J. (1922) Human Nature and Conduct: An Introduction to Social Psychology. New York, NY: Henry Holt and Co. https://doi.org/10.1037/14663-000

Duranti A. (2005) Agency in Language. A Companion to Linguistic Anthropology (ed. A. Duranti), Malden, MA: Blackwell, pp. 449–473. https://doi.org/10.1002/9780470996522.ch20

Ekin C.Ç., Çakici M., Şener E., Türker S., Altanlar S. (2021) Research Trends Analysis in Educational Journal Publications on COVID-19 Using Descriptive and Text Mining Methods: Preliminary Analysis. European Journal of Science and Technology, iss. 29, pp. 432–437. https://doi.org/10.31590/ejosat.1036109

Fogle L.W., King K.A. (2013) Child Agency and Language Policy in Transnational Families. Issues in Applied Linguistics, vol. 19. https://doi.org/10.5070/l4190005288

Grootendorst M. (2022) BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure. https://doi.org/10.48550/arXiv.2203.05794

Gurcan F., Dalveren G.G., Derawi M. (2022) COVID-19 and e-Learning: An Exploratory Analysis of Research Topics and Interests in e-Learning during the Pandemic. IEEE Access, vol. 10, pp. 123349–123357. https://doi.org/10.1109/access.2022.3224034

He J., Rubinstein B.I.P., Bailey J., Zhang R., Milligan S. (2017) TopicResponse: A Marriage of Topic Modelling and Rasch Modelling for Automatic Measurement in MOOCs. ArXiv: 607.08720v2.

Heilala V. (2022) Learning Analytics with Learning and Analytics: Advancing Student Agency Analytics (PhD Thesis), Jyväskylä: University of Jyväskylä.

Jääskelä P., Heilala V., Kärkkäinen T., Häkkinen P. (2020) Student Agency Analytics: Learning Analytics as a Tool for Analysing Student Agency in Higher Education. Behaviour & Information Technology, vol. 40, no 8, pp. 790–808. https://doi.org/10.1080/0144929x.2020.1725130

Jääskelä P., Poikkeus A., Vasalampi K., Valleala U.M., Rasku-Puttonen H. (2016) Assessing Agency of University Students: Validation of the AUS scale. Studies in Higher Education, vol. 42, no 11, pp. 2061–2079. https://doi.org/10.1080/03075079.2015.1130693

Johnston P.H. (2004) Choice Words: How Our Language Affects Children's Learning. Portland, ME: Stenhouse.

Kandula S., Curtis D., Hill B., Zeng-Treitler Q. (2011) Use of Topic Modeling for Recommending Relevant Education Material to Diabetic Patients. AMIA Annual Symposium Proceedings Archive, pp. 674–682.

Kastrati Z., Dalipi F., Imran A.S., Nuci K.P., Wani M.A. (2021) Sentiment Analysis of Students’ Feedback with NLP and Deep Learning: A Systematic Mapping Study. Applied Sciences, vol. 11, no 9, Article no 3986. https://doi.org/10.3390/app11093986

Kim J. (2022) Analyzing ‘Student Agency’ Embedded in the Discourse of Future Education: (Re)interpretation of the OECD Education 2030 Project. The Journal of Curriculum Studies, vol. 40, no 2, pp. 181–202. https://doi.org/10.15708/kscs.40.2.8

Korshunov A., Gomzin A. (2012) Tematicheskoe modelirovanie tekstov na estestvennom yazyke [Topic Modeling in Natural Language Texts]. Proceedings of the Institute for System Programming of the RAS, vol. 23. https://doi.org/10.15514/ISPRAS-2012-23-13

Leadbeater C. (2017) Student Agency: Learning to Make a Difference. East Melbourne, VIC: The Centre for Strategic Education.

Li Y., Zheng Y., Bao H., Liu Y. (2015) Towards Better Understanding of Hot Topics in Online Learning Communities. Smart Learning Environments, vol. 2, no 1, Article no 12. https://doi.org/10.1186/s40561-015-0019-6

Littleton K., Taylor S., Eteläpelto A. (2011) Special Issue Introduction: Creativity and Creative Work in Contemporary Working Contexts. Vocations and Learning, vol. 5, no 1, pp. 1–4. https://doi.org/10.1007/s12186-011-9067-4

Mameli C., Passini S. (2018) Development and Validation of an Enlarged Version of the Student Agentic Engagement Scale. Journal of Psychoeducational Assessment, vol. 37, no 4, pp. 450–463. https://doi.org/10.1177/0734282918757849

Matos L., Reeve J., Herrera D., Claux M. (2018) Students' Agentic Engagement Predicts Longitudinal Increases in Perceived Autonomy-Supportive Teaching: The Squeaky Wheel Gets the Grease. The Journal of Experimental Education, vol. 86, no 4, pp. 579–596. https://doi.org/10.1080/00220973.2018.1448746

McCauley L., King K. (2021) Human-Centered Learning and Student Agency: “Think Big, Start Small and Act Fast”. Available at: https://knowledgeworks.org/resources/human-centered-learning-student-agency/ (accessed 20 February 2024).

Molavi M., Tavakoli M., Kismihók G. (2020) Extracting Topics from Open Educational Resources. Addressing Global Challenges and Quality Education. EC-TEL 2020. Lecture Notes in Computer Science (eds C. Alario-Hoyos, M.J. Rodríguez-Triana, M. Scheffel, I. Arnedillo-Sánchez, S.M. Dennerlein), vol. 12315. Cham: Springer, pp. 455–460. https://doi.org/10.1007/978-3-030-57717-9_44

Nazari A., Hossennia M., Garmaroudi G., Torkian S. (2023) Social Media and Mental Health in Students: A Cross-Sectional Study during the COVID-19 Pandemic. https://doi.org/10.21203/rs.3.rs-2535464/v1

Nogueira F.D. (2017) Reassembling the Social: An Introduction to Actor-Network Theory, Oxford university press, 2005. Formação (Online), vol. 1, no 25, pp. 229–233. https://doi.org/10.33081/formacao.v1i25.5251

Saarela M., Heilala V., Jaaskela P., Rantakaulio A., Karkkainen T. (2021) Explainable Student Agency Analytics. IEEE Access, vol. 9, pp. 137444–137459. https://doi.org/10.1109/access.2021.3116664

Sorokin P.S. (2021) "Transformiruyushchaya agentnostʼ" kak predmet sotsiologicheskogo analiza: sovremennye diskussii i rolʼ obrazovaniya [“Transformative Agency” as an Object of Sociological Analysis: Contemporary Discussions and the Role of Education]. RUDN Journal of Sociology, vol. 21, no 1, pp. 124–138. https://doi.org/10.22363/2313-2272-2021-21-1-124-138

Sorokin P.S., Zykova A.V. (2021) "Transformiruyushchaya agentnostʼ" kak predmet issledovaniy i razrabotok v XXI veke: obzor i interpretatsiya mezhdunarodnogo opyta ["Transformative Agency" as a Subject of Research and Development in the 21st Century: A Review and Interpretation of International Experience]. Monitoring of Public Opinion: Economic and Social Changes, no 5, pp. 216–241. https://doi.org/ 10.14515/monitoring.2021.5.1858

Tadeo D.J., Yoo J. (2022) Topic Modeling of the Student Emails Sent before and during the Birth of COVID-19 in Physics and Math Classes. Eurasia Journal of Mathematics, Science and Technology Education, vol. 18, no 10, Artocle no em2167. https://doi.org/10.29333/ejmste/12455

Vaughn M. (2020) What Is Student Agency and Why Is It Needed Now More Than Ever? Theory Into Practice, vol. 59, no 2, pp. 109–118. https://doi.org/10.1080/00405841.2019.1702393

Vygotsky L. (1980) Mind in Society: The Development of Higher Psychological Processes. Cambridge, MA; London: Harvard University.

Waheeb S.A., Khan N.A., Shang X. (2022) Topic Modeling and Sentiment Analysis of Online Education in the COVID-19 Era Using Social Networks Based Datasets. Electronics, vol. 11, no 5, Article no 715. https://doi.org/10.3390/electronics11050715

Wong A.V., Wong K., Hindle A. (2019) Tracing Forum Posts to MOOC Content using Topic Analysis. ArXiv: 1904.07307v1.

Yin B., Yuan C. (2022) Detecting Latent Topics and Trends in Blended Learning Using LDA Topic Modeling. Education and Information Technologies, vol. 27, no 9, pp. 12689–12712. https://doi.org/10.1007/s10639-022-11118-0

Zeiser K., Scholz C., Cirks V. (2018) Maximizing Student Agency: Implementing and Measuring Student-Centered Learning Practices. Boston, Washington, DC, Oakland: American Institutes for Research.

Zhang Z., Miao D., Gao C. (2013) Short Text Classification Using Latent Dirichlet Allocation. Journal of Computer Applications, vol. 33, no 6, pp. 1587–1590. https://doi.org/10.3724/sp.j.1087.2013.01587

Опубликован
2024-04-04
Как цитировать
Дюличева, Юлия. 2024. «Датасет и разработка инструмента учебной аналитики для извлечения проявлений студенческой агентности из текстов отзывов на МООК». Вопросы образования / Educational Studies Moscow, вып. 1 (апрель). https://doi.org/10.17323/vo-2024-16677.
Выпуск
Раздел
Базы данных в сфере образования