Dataset and Development of Learning Analytic Tool to Extract Manifestations of Students’ Agency from Texts of Comments from MOOCs
Abstract
The study is devoted to the automatic identification of manifestations of various components and sources of student agency from the texts of reviews of MOOCs, as well as descriptions of internal and external transformation among students in the process of studying MOOCs. To extract descriptions corresponding to individual, relational and contextual sources of students’ agency, a dataset of 3445 English-language comments on the most popular mathematics courses presented on the Udemy platform was generated, and additionally 1787 comments on practice-oriented MOOCs and entrepreneurship MOOCs were extracted to understand the descriptions corresponding manifestation of internal and external transformation in MOOC listeners. The paper proposes a methodological approach based on the use of natural language processing methods such as topic modeling, sentiment analysis and N-gram frequency analysis for extracting keywords and their combinations from MOOCs’ comments texts to describe the manifestation of the components of an individual source of student agency in the form of self-efficacy , increased sense of confidence in solving problems and motivation; components of the relational source in the form of support and accompaniment of the online course by the tutor with the help of quick answers and well-structured educational material; components of the contextual source in the form of the ability to make decisions when choosing alternative online courses, as well as descriptions of the manifestation of internal transformation of students, expressed in the transition from internal struggle - overcoming fears, uncertainty, difficulties in perceiving MOOC content to understanding the purpose of learning and external transformation, expressed in the texts of comments on MOOCs in the form of creating a new or changing the structure of an existing product, startup or business through a change in thinking.
Downloads
References
Ahearn L.M. (2001) Language and Agency. Annual Review of Anthropology, vol. 30, no 1, pp. 109–137. https://doi.org/10.1146/annurev.anthro.30.1.109
Alhazmi H. (2022) Detection of Students’ Problems in Distance Education Using Topic Modeling and Machine Learning. Future Internet, vol. 14, no 6, Article no 170. https://doi.org/10.3390/fi14060170
Allington R.L. (1980) Teacher Interruption Behaviors during Primary-Grade Oral Reading. Journal of Educational Psychology, vol. 72, no 3, pp. 371–377. https://doi.org/10.1037/0022-0663.72.3.371
Andre J. (2021) Can Learning Analytics Increase Agency and Transform Digital Learning? Paper presented at the conference "Digital Transformation and Higher Education: When Challenges are Opportunities" (September, 2021, Hanoi, Vietnam).
Bandura A. (1999) Social Cognitive Theory: An Agentic Perspective. Asian Journal of Social Psychology, vol. 2, no 1, pp. 21–41. https://doi.org/10.1111/1467-839x.00024
Bandura A. (1986) Social Foundations of Thought and Action: A Social Cognitive Theory. Englewood Cliffs, NJ: Prentice Hall.
Chen Y., Yu B., Zhang X., Yu Y. (2016) Topic Modeling for Evaluating Students' Reflective Writing. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge — LAK '16 (Edinburgh, UK, 2016, April 25–29). http://dx.doi.org/10.1145/2883851.2883951
Chen X., Zou D., Cheng G., Xie H. (2020) Detecting Latent Topics and Trends in Educational Technologies over Four Decades Using Structural Topic Modeling: A Retrospective of All Volumes of Computers & Education. Computers & Education, vol. 151, July, Article no 103855. https://doi.org/10.1016/j.compedu.2020.103855
Copur-Gencturk Y., Choi H., Cohen A. (2022) Investigating Teachers’ Understanding through Topic Modeling: A Promising Approach to Studying Teachers’ Knowledge. Journal of Mathematics Teacher Education, vol. 26, pp. 281–302. https://doi.org/10.1007/s10857-021-09529-w
Devi S., Dhavale C., Moharkar L., Khanvilkar S. (2022) Impact of Online Education and Sentiment Analysis from Twitter Data Using Topic Modeling Algorithms. International Journal of Applied Sciences and Smart Technologies, vol. 4, no 1, pp. 21–34. https://doi.org/10.24071/ijasst.v4i1.4637
Dewey J. (1922) Human Nature and Conduct: An Introduction to Social Psychology. New York, NY: Henry Holt and Co. https://doi.org/10.1037/14663-000
Duranti A. (2005) Agency in Language. A Companion to Linguistic Anthropology (ed. A. Duranti), Malden, MA: Blackwell, pp. 449–473. https://doi.org/10.1002/9780470996522.ch20
Ekin C.Ç., Çakici M., Şener E., Türker S., Altanlar S. (2021) Research Trends Analysis in Educational Journal Publications on COVID-19 Using Descriptive and Text Mining Methods: Preliminary Analysis. European Journal of Science and Technology, iss. 29, pp. 432–437. https://doi.org/10.31590/ejosat.1036109
Fogle L.W., King K.A. (2013) Child Agency and Language Policy in Transnational Families. Issues in Applied Linguistics, vol. 19. https://doi.org/10.5070/l4190005288
Grootendorst M. (2022) BERTopic: Neural Topic Modeling with a Class-Based TF-IDF Procedure. https://doi.org/10.48550/arXiv.2203.05794
Gurcan F., Dalveren G.G., Derawi M. (2022) COVID-19 and e-Learning: An Exploratory Analysis of Research Topics and Interests in e-Learning during the Pandemic. IEEE Access, vol. 10, pp. 123349–123357. https://doi.org/10.1109/access.2022.3224034
He J., Rubinstein B.I.P., Bailey J., Zhang R., Milligan S. (2017) TopicResponse: A Marriage of Topic Modelling and Rasch Modelling for Automatic Measurement in MOOCs. ArXiv: 607.08720v2.
Heilala V. (2022) Learning Analytics with Learning and Analytics: Advancing Student Agency Analytics (PhD Thesis), Jyväskylä: University of Jyväskylä.
Jääskelä P., Heilala V., Kärkkäinen T., Häkkinen P. (2020) Student Agency Analytics: Learning Analytics as a Tool for Analysing Student Agency in Higher Education. Behaviour & Information Technology, vol. 40, no 8, pp. 790–808. https://doi.org/10.1080/0144929x.2020.1725130
Jääskelä P., Poikkeus A., Vasalampi K., Valleala U.M., Rasku-Puttonen H. (2016) Assessing Agency of University Students: Validation of the AUS scale. Studies in Higher Education, vol. 42, no 11, pp. 2061–2079. https://doi.org/10.1080/03075079.2015.1130693
Johnston P.H. (2004) Choice Words: How Our Language Affects Children's Learning. Portland, ME: Stenhouse.
Kandula S., Curtis D., Hill B., Zeng-Treitler Q. (2011) Use of Topic Modeling for Recommending Relevant Education Material to Diabetic Patients. AMIA Annual Symposium Proceedings Archive, pp. 674–682.
Kastrati Z., Dalipi F., Imran A.S., Nuci K.P., Wani M.A. (2021) Sentiment Analysis of Students’ Feedback with NLP and Deep Learning: A Systematic Mapping Study. Applied Sciences, vol. 11, no 9, Article no 3986. https://doi.org/10.3390/app11093986
Kim J. (2022) Analyzing ‘Student Agency’ Embedded in the Discourse of Future Education: (Re)interpretation of the OECD Education 2030 Project. The Journal of Curriculum Studies, vol. 40, no 2, pp. 181–202. https://doi.org/10.15708/kscs.40.2.8
Korshunov A., Gomzin A. (2012) Tematicheskoe modelirovanie tekstov na estestvennom yazyke [Topic Modeling in Natural Language Texts]. Proceedings of the Institute for System Programming of the RAS, vol. 23. https://doi.org/10.15514/ISPRAS-2012-23-13
Leadbeater C. (2017) Student Agency: Learning to Make a Difference. East Melbourne, VIC: The Centre for Strategic Education.
Li Y., Zheng Y., Bao H., Liu Y. (2015) Towards Better Understanding of Hot Topics in Online Learning Communities. Smart Learning Environments, vol. 2, no 1, Article no 12. https://doi.org/10.1186/s40561-015-0019-6
Littleton K., Taylor S., Eteläpelto A. (2011) Special Issue Introduction: Creativity and Creative Work in Contemporary Working Contexts. Vocations and Learning, vol. 5, no 1, pp. 1–4. https://doi.org/10.1007/s12186-011-9067-4
Mameli C., Passini S. (2018) Development and Validation of an Enlarged Version of the Student Agentic Engagement Scale. Journal of Psychoeducational Assessment, vol. 37, no 4, pp. 450–463. https://doi.org/10.1177/0734282918757849
Matos L., Reeve J., Herrera D., Claux M. (2018) Students' Agentic Engagement Predicts Longitudinal Increases in Perceived Autonomy-Supportive Teaching: The Squeaky Wheel Gets the Grease. The Journal of Experimental Education, vol. 86, no 4, pp. 579–596. https://doi.org/10.1080/00220973.2018.1448746
McCauley L., King K. (2021) Human-Centered Learning and Student Agency: “Think Big, Start Small and Act Fast”. Available at: https://knowledgeworks.org/resources/human-centered-learning-student-agency/ (accessed 20 February 2024).
Molavi M., Tavakoli M., Kismihók G. (2020) Extracting Topics from Open Educational Resources. Addressing Global Challenges and Quality Education. EC-TEL 2020. Lecture Notes in Computer Science (eds C. Alario-Hoyos, M.J. Rodríguez-Triana, M. Scheffel, I. Arnedillo-Sánchez, S.M. Dennerlein), vol. 12315. Cham: Springer, pp. 455–460. https://doi.org/10.1007/978-3-030-57717-9_44
Nazari A., Hossennia M., Garmaroudi G., Torkian S. (2023) Social Media and Mental Health in Students: A Cross-Sectional Study during the COVID-19 Pandemic. https://doi.org/10.21203/rs.3.rs-2535464/v1
Nogueira F.D. (2017) Reassembling the Social: An Introduction to Actor-Network Theory, Oxford university press, 2005. Formação (Online), vol. 1, no 25, pp. 229–233. https://doi.org/10.33081/formacao.v1i25.5251
Saarela M., Heilala V., Jaaskela P., Rantakaulio A., Karkkainen T. (2021) Explainable Student Agency Analytics. IEEE Access, vol. 9, pp. 137444–137459. https://doi.org/10.1109/access.2021.3116664
Sorokin P.S. (2021) "Transformiruyushchaya agentnostʼ" kak predmet sotsiologicheskogo analiza: sovremennye diskussii i rolʼ obrazovaniya [“Transformative Agency” as an Object of Sociological Analysis: Contemporary Discussions and the Role of Education]. RUDN Journal of Sociology, vol. 21, no 1, pp. 124–138. https://doi.org/10.22363/2313-2272-2021-21-1-124-138
Sorokin P.S., Zykova A.V. (2021) "Transformiruyushchaya agentnostʼ" kak predmet issledovaniy i razrabotok v XXI veke: obzor i interpretatsiya mezhdunarodnogo opyta ["Transformative Agency" as a Subject of Research and Development in the 21st Century: A Review and Interpretation of International Experience]. Monitoring of Public Opinion: Economic and Social Changes, no 5, pp. 216–241. https://doi.org/ 10.14515/monitoring.2021.5.1858
Tadeo D.J., Yoo J. (2022) Topic Modeling of the Student Emails Sent before and during the Birth of COVID-19 in Physics and Math Classes. Eurasia Journal of Mathematics, Science and Technology Education, vol. 18, no 10, Artocle no em2167. https://doi.org/10.29333/ejmste/12455
Vaughn M. (2020) What Is Student Agency and Why Is It Needed Now More Than Ever? Theory Into Practice, vol. 59, no 2, pp. 109–118. https://doi.org/10.1080/00405841.2019.1702393
Vygotsky L. (1980) Mind in Society: The Development of Higher Psychological Processes. Cambridge, MA; London: Harvard University.
Waheeb S.A., Khan N.A., Shang X. (2022) Topic Modeling and Sentiment Analysis of Online Education in the COVID-19 Era Using Social Networks Based Datasets. Electronics, vol. 11, no 5, Article no 715. https://doi.org/10.3390/electronics11050715
Wong A.V., Wong K., Hindle A. (2019) Tracing Forum Posts to MOOC Content using Topic Analysis. ArXiv: 1904.07307v1.
Yin B., Yuan C. (2022) Detecting Latent Topics and Trends in Blended Learning Using LDA Topic Modeling. Education and Information Technologies, vol. 27, no 9, pp. 12689–12712. https://doi.org/10.1007/s10639-022-11118-0
Zeiser K., Scholz C., Cirks V. (2018) Maximizing Student Agency: Implementing and Measuring Student-Centered Learning Practices. Boston, Washington, DC, Oakland: American Institutes for Research.
Zhang Z., Miao D., Gao C. (2013) Short Text Classification Using Latent Dirichlet Allocation. Journal of Computer Applications, vol. 33, no 6, pp. 1587–1590. https://doi.org/10.3724/sp.j.1087.2013.01587