Reading or Pretending to Read? Analysis of the Behavior of Primary School Students during a Reading Comprehension Test
Abstract
The article describes the analysis of students’ behavior when performing a computerized test of reading comprehension. On a sample of 2157 fourth graders in Krasnoyarsk, using the method of latent profile analysis, five typical profiles of students were identified based on combinations of variables: “average text reading time”, “number of quick answers”, “amount of time to read auxiliary text”, “total test time”. The identified groups of students are interpreted using the assessment results. The identified profiles will be useful for a deeper interpretation of the assessment results and as a practical basis for developing methods for a differential approach to teaching.
Downloads
References
Al-Khasawneh F. (2020) Test-Taking Strategies and Reading Comprehension: A Correlational Investigation. Issues in Language Studies, vol. 9, no 1, pp. 155–165. https://doi.org/10.33736/ils.2161.2020
Ashraf A., Zaki S. (2016) Analyzing Characteristics of Reading Test Tasks Designed for Undergraduate Language Assessment. Journal of Independent Studies & Research: Management & Social Sciences & Economics, vol. 14, no 1, pp. 89–104. https://doi.org/10.31384/jisrmsse/2016.14.1.7
Assiri M.S., Alodhahi E.A. (2018) Test-Taking Strategies on Reading Comprehension Tests: A Review of Major Research Themes. Studies in English Language Teaching, vol. 6, no 3, pp. 207–227. https://doi.org/10.22158/selt.v6n3p207
Bauer J. (2021) A Primer to Latent Profile and Latent Class Analysis. PsyArXiv. https://doi.org/10.31234/osf.io/97uab
Bayrak Karsli M., Demirel T., Kurşun E. (2020) Examination of Different Reading Strategies with Eye Tracking Measures in Paragraph Questions. Hacettepe University Journal of Education, vol. 35, no 1, pp. 92–106. https://doi.org/10.16986/HUJE.2019051160
Boone W.J., Noltemeyer A. (2017) Rasch Analysis: A Primer for School Psychology Researchers and Practitioners. Cogent Education, vol. 4, no 1, Article no 1416898. https://doi.org/10.1080/2331186X.2017.1416898
Cerdán R., Pérez A., Vidal-Abarca E., Rouet J.F. (2019) To Answer Questions from Text, One Has to Understand What the Question Is Asking: Differential Effects of Question Aids as a Function of Comprehension Skill. Reading and Writing, vol. 32, no 8, pp. 2111–2124. https://doi.org/10.1007/s11145-019-09943-w
Cerdán R., Vidal-Abarca E., Martínez T., Gilabert R., Gil L. (2009) Impact of Question-Answering Tasks on Search Processes and Reading Comprehension. Learning and Instruction, vol. 19, no 1, pp. 13–27. https ://doi.org/10.1016/j.learninstruc.2007.12.003
Cohen A.D. (2012) Test Taker Strategies and Task Design. The Routledge Handbook of Language Testing (eds G. Fulcher, F. Davidson), Abingdon, England: Routledge, pp. 262–277. https://doi.org/10.4324/9780203181287
Cohen A.D. (2006) The Coming of Age of Research on Test-Taking Strategies. Language Assessment Quarterly, vol. 3, no 4, pp. 307–331. https://doi.org/10.1080/15434300701333129
Cohen A.D., Upton T.A. (2006) Strategies in Responding to the New TOEFL Reading Tasks. TOEFL Monograph Serie no 33. Princeton, NJ: Test of English as a Foreign Language.
Gosteva Yu.N., Kuznetsova M.I., Ryabinina L.A., Sidorova G.A., Chaban T.Yu. (2019) Teoriya i praktika otsenivaniya chitatelʾskoy gramotnosti kak komponenta funktsionalʾnoy gramotnosti [Theory and Practice of Reading Literacy as a Component of Functional Literacy]. Otechestvennaya i zarubezhnaya pedagogika, vol. 1, no 4 (61), pp. 34–57.
Guttersrud O., Le C., Pettersen K.S., Helseth S., Finbråten H.S. (2019) Towards a Progression of Health Literacy Skills: Establishing the HLS-Q12 Cutoff Scores. Preprint. https://doi.org/10.21203/rs.2.13456/v2
International Reading Association, National Council of Teachers of English (2009) Standards for the Assessment of Reading and Writing. Available at: https://ncte.org/resources/standards/standards-for-the-assessment-of-reading-and-writing-revised-edition-2009/ (accessed 2 February 2023).
Laposhina A.N., Lebedeva M.Yu. (2021) Tekstometr: onlain-instrument opredeleniya urovnya slozhnosti teksta po russkomu yazyku kak inostrannomu [Textometr: An Online Tool for Automated Complexity Level Assessment of Texts for Russian Language Learners]. Russian Language Studies, vol. 19, no 3, pp. 331–345. https://doi.org/10.22363/2618-8163-2021-19-3-331-345
Lee J.-Y. (2018) The Use of Test-Taking Strategies and Students' Performances in Answering TOEIC Reading Comprehension Questions. Taiwan Journal of TESOL, vol. 15.2, pp. 33–64. https://doi.org/10.30397/TJTESOL.201810_15(2).0002
Linacre J.M. (2017) Winsteps [R] Rasch Measurement Computer Program, Version 4.1. Beaverton: Winsteps. com.
Marjerison R.K., Liu P., Duffy L.P., Chen R. (2020) An Exploration of the Relationships between Different Reading Strategies and IELTS Test Performance: IELTS Test Taking Strategies—Chinese Students. International Journal of Translation, Interpretation, and Applied Linguistics (IJTIAL), vol. 2, no 1, pp. 1–19. https://doi.org/10.4018/IJTIAL.2020010101
Masters G.N. (1982) A Rasch Model for Partial Credit Scoring. Psychometrika, vol. 47, no 2, pp. 149–174. https://doi.org/10.1007/BF02296272
Masyn K.E. (2013) Latent Class Analysis and Finite Mixture Modeling. The Oxford Handbook of Quantitative Methods. Vol. 2: Statistical Analysis (ed. T.D. Little), Oxford: Oxford University, pp. 551–611. https://doi.org/10.1093/oxfordhb/9780199934898.013.0025
Melentieva Yu.P. (2016) Obshchaya teoriya chteniya [General Theory of Reading]. Moscow: Nauka.
Mullis I.V., Martin M.O., Sainsbury M. (2016) PIRLS 2016 Reading Framework. PIRLS 2016 Assessment Framework (eds I.V.S. Mullis, M.O. Martin). Boston, MA: Boston College, TIMSS & PIRLS International Study Center, pp. 11–29.
Nylund K.L., Asparouhov T., Muthén B.O. (2007) Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Structural Equation Modeling: A Multidisciplinary Journal, vol.14, no 4, pp. 535–569. https://doi.org/10.1080/10705510701575396
Oberski D. (2016) Mixture Models: Latent Profile and Latent Class Analysis. Modern Statistical Methods for HCI (eds J. Robertson, M. Kaptein), Cham: Springer, pp. 275–287. https://doi.org/10.1007/978-3-319-26633-6
Olivera-Aguilar M., Rikoon S.H., Robbins S.B. (2017) Using Latent Profile Analysis to Identify Noncognitive Skill Profiles among College Students. The Journal of Higher Education, vol. 88, no 2, pp. 234–257. https://doi.org/10.1080/00221546.2016.1244413
Pastor D.A., Barron K.E., Miller B.J., Davis S.L. (2007) A Latent Profile Analysis of College Students’ Achievement Goal Orientation. Contemporary Educational Psychology, vol. 32, no 1, pp. 8–47. https://doi.org/10.1016/j.cedpsych.2006.10.003
Rosenberg J.M., Beymer P.N., Anderson D.J., van Lissa C.J., Schmidt J.A. (2018) tidyLPA: An R Package to Easily Carry out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software. Journal of Open Source Software, vol. 3, no 30, Article no 978. https://doi.org/10.21105/joss.00978
Salmerón L., Vidal-Abarca E., Martínez T., Mañá A., Gil L., Naumann J. (2015) Strategic Decisions in Task-Oriented Reading. The Spanish Journal of Psychology, vol. 18, December, Article no E102. https://doi.org/10.1017/sjp.2015.101
Scherer R., Greiff S., Hautamäki J. (2015) Exploring the Relation between Time on Task and Ability in Complex Problem Solving. Intelligence, vol. 48, January, pp. 37–50. https://doi.org/10.1016/j.intell.2014.10.003
Scrucca L., Fop M., Murphy T.B., Raftery A.E. (2016) mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. The R Journal, vol. 8, no 1, pp. 289–317. https://doi.org/10.32614/RJ-2016-021
Smith R.M. (1996) A Comparison of Methods for Determining Dimensionality in Rasch Measurement. Structural Equation Modeling: A Multidisciplinary Journal, vol. 3, no 1, pp. 25–40. http://dx.doi.org/10.1080/10705519609540027
Vermunt J.K., Magidson J. (2002) Latent Class Cluster Analysis. Applied Latent Class Analysis (eds J.A. Hagenaars, A.L. McCutcheon), Cambridge: Cambridge University, pp. 89–106.
Vidal-Abarca E., Mañá A., Gil L. (2010) Individual Differences for Self-Regulating Task-Oriented Reading Activities. Journal of Educational Psychology, vol. 102, no 4, pp. 817–826. https://doi.org/10.1037/a0020062
Williams G.A., Kibowski F. (2016) Latent Class Analysis and Latent Profile Analysis. Handbook of Methodological Approaches to Community-Based Research. Qualitative, Quantitative, and Mixed Methods (eds L.A. Jason, D.S. Glenwick), Oxford: Oxford University, pp. 143–151. https://doi.org/10.1093/med:psych/9780190243654.003.0015
Wise S.L., Kong X. (2005) Response Time Effort: A New Measure of Examinee Motivation in Computer-Based Tests. Applied Measurement in Education, vol. 18, no 2, pp. 163–183. https://doi.org/10.1207/s15324818ame1802_2
Yeari M., Schlesinger L.M., Moshka E. (2021) The Role of Time Constraints and Domain Knowledge in Reading Comprehension Tests: The Case of Text-First versus Questions-First Strategies. Reading Research Quarterly, vol. 57, no 3, pp. 913–936. https://doi.org/10.1002/rrq.452
Copyright (c) Authors retain copyright and accept the terms of publication in the journal (https://vo.hse.ru/copyright)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.