Current Trends in the Development of Neuroscientific Research in Education

Keywords: neuroscience in education, pedagogy, psychology, neuroimaging, neurodidactics, biomarkers, cognitive neuroscience, functional brain networks, brain-computer interfaces


Modern neuroscience is making significant progress in the study of brain functions, which can be of great importance for the education. However, there is a gap between current neuroscientific evidence on how the brain learns and its direct application in classrooms. What can neuroscientists, psychologists, and educators do to improve the interaction between neuroscience and education? In this article, we attempt to answer this question by examining the essentials of educational neuroscience as an interdisciplinary field of research at the intersection of neuroscience, pedagogy, and cognitive science, which seeks to translate research on the neural mechanisms of learning into educational practice and understand the impact of education on the learner's brain. In the first part of the article we describe the origins and current progress of neuroscience in education, discuss terminological uncertainty in the Russian scientific literature on the relationship between neuroscience and education, as well as possible and, in our opinion, most promising ways of interaction between psychology, pedagogy and neuroscience. In the second part of the article we analyze the main directions of contemporary research in the field of neuroscience, based on the Scopus database of scientific information.


Download data is not yet available.


Alloway T.P., Alloway R.G. (2014) Understanding Working Memory. Thousand Oaks, CA: Sage.

Amso D., Scerif G. (2015) The Attentive Brain: Insights from Developmental Cognitive Neuroscience. Nature Reviews Neuroscience, vol. 16, no 10, pp. 606–619.

Baars B.J. (1997) In the Theatre of Consciousness. Global Workspace Theory, a Rigorous Scientific Theory of Consciousness. Journal of Consciousness Studies, vol. 4, no 4, pp. 292–309.

Bazhanov V.A., Shkurko YU.S. (2018) Sovremennaya nejronauka i obrazovanie: novye argumenty v pol'zu staryh priemov [Modern Neuroscience and Education: New Arguments in Favor of Old Techniques]. Pedagogika, no 8, pp. 29–38.

Bastarrika A., Davidson D. (2017) An Event Related Field Study of Rapid Grammatical Plasticity in Adult Second-Language Learners. Frontiers in Human Neuroscience, vol. 11, January, Article no 12.

Beauchamp C., Beauchamp M.H. (2013) Boundary as Bridge: An Analysis of the Educational Neuroscience Literature from a Boundary Perspective. Educational Psychology Review, vol. 25, no 1, pp. 47–67.

Bernacki M.L., Walkington С. (2018) The Role of Situational Interest in Personalized Learning. Journal of Educational Psychology, vol. 110, no 6, pp. 864–881.

Bowers J.S. (2016a) Psychology, Not Educational Neuroscience, Is the Way Forward for Improving Educational Outcomes for All Children: Reply to Gabrieli (2016) and Howard-Jones et al. (2016). Psychological Review, vol. 123, no 5, pp. 628–635.

Bowers J.S. (2016b) The Practical and Principled Problems with Educational Neuroscience. Psychological Review, vol. 123, no 5, pp. 600–612.

Brockington G., Balardin J.B., Morais G., Malheiros A., Lent R., Moura L., Sato J.R. (2018) From the Laboratory to the Classroom: The Potential of Functional Near-Infrared Spectroscopy in Educational Neuroscience. Frontiers in Psychology, vol. 9, October, Article no 1840.

Brookman-Byrne A., Thomas M.S.C. (2018) Neuroscience, Psychology and Education: Emerging Links. Impact, no 2, pp. 5–8.

Bruce C.D., Davis B., Sinclair N., McGarvey L., Hallowell D., Drefs M., Francis K. et al. (2017) Understanding Gaps in Research Networks: Using “Spatial Reasoning” as a Window into the Importance of Networked Educational Research. Educational Studies in Mathematics, vol. 95, no 2, pp. 143–161.

Bruel-Jungerman E., Davis S., Laroche S. (2007) Brain Plasticity Mechanisms and Memory: A Party of Four. The Neuroscientist, vol. 13, no 5, pp. 492–505.

Bruer J. T. (1997). Education and the Brain: A Bridge Too Far. Educational Researcher, vol. 26, no 8, pp. 4–16.

Budgen S., DeWind N.K., Brannon E.M. (2016) Using Cognitive Training Studies to Unravel the Mechanisms by Which the Approximate Number System Supports Symbolic Math Ability. Current Opinion in Behavioral Sciences, vol. 10, May, pp. 73–80.

Budson A.E., Richman K.A., Kensinger E.A. (2022) Consciousness as a Memory System. Cognitive and Behavioral Neurology, vol. 35, no 4, pp. 263–297.

Bukina T.V., Khramova M.V., Kurkin S.A. (2021) Sovremennye issledovaniya funktsionirovaniya mozga detej mladshego shkol'nogo vozrasta v protsesse obucheniya: obzor [Modern Research on Primary School Children Brain Functioning in the Learning Process: Review]. Izvestiya VUZ. Applied Nonlinear Dynamics, vol. 29, no 3, pp. 449–456.

Bulger M. (2016) Personalized Learning: The Conversations We’re Not Having. Data & Society Research Institute Working Paper 07.22.2016. Available at: (accessed 20 June 2023).

Butterworth B., Varma S. (2013). Mathematical Development. Educational Neuroscience (eds D. Mareschal, B. Butterworth, A. Tolmie), Oxford, UK: Wiley Blackwell, pp. 201–236.

Caligiore D., Arbib M.A., Miall R.C., Baldassarre G. (2019) The Super-Learning Hypothesis: Integrating Learning Processes across Cortex, Cerebellum and Basal Ganglia. Neuroscience & Biobehavioral Reviews, vol. 100, February, pp. 19–34.

Caligiore D., Pezzulo G., Baldassarre G., Bostan A.C., Strick P.L., Doya K. et al. (2017) Consensus Paper: Towards a Systems-Level View of Cerebellar Function: The Interplay between Cerebellum, Basal Ganglia, and Cortex. The Cerebellum, vol. 16, no 1, pp. 203–229.

Chandler J. A., Harrel N., Potkonjak T. (2019) Neurolaw Today–A Systematic Review of the Recent Law and Neuroscience Literature. International Journal of Law and Psychiatry, vol. 65, no 1, Article no 101341.

Clement N.D., Lovat T. (2012) Neuroscience and Education: Issues and Challenges for Curriculum. Curriculum Inquiry, vol. 42, no 4, pp. 534–557.

Daley N., Rawson A.K. (2019) Elaborations in Expository Text Impose a Substantial Time Cost but Do Not Enhance Learning. Educational Psychology Review, vol. 31, no 2, pp. 197–222.

De Brigard F., Sinnott-Armstrong W. (eds) (2022) Neuroscience and Philosophy. Cambridge, MA,

London, England: MIT Press.

Davidesco I., Matuk C., Bevilacqua D., Poeppel D., Dikker S. (2021) Neuroscience Research in the Classroom: Portable Brain Technologies in Education Research. Educational Researcher, vol. 50, no 9, pp. 649–656.

Dimitropoulos K., Mystakidis S., Fragkaki M. (2022) Bringing Educational Neuroscience to Distance Learning with Design Thinking: The Design and Development of a Hybrid E-learning Platform for Skillful Training. Proceedings of the 2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (Ioannina, Greece, September, 23–25, 2022), pp. 1–6.

Donaldson K., Tran L., Jimenez L.A., Duffin R., Newby D.E. et al. (2005) Combustion-Derived Nanoparticles: A Review of Their Toxicology Following Inhalation Exposure. Particle and Fibre Toxicology, vol. 2, no 1, Article no 10.

Doukakis S., Alexopoulos E.C. (2021) The Role of Educational Neuroscience in Distance Learning. Knowledge Transformation Opportunities. Proceedings of the International Conference on Interactive Collaborative and Blended Learning (Hamilton, Canada, October, 14–16, 2020), Cham: Springer, pp. 159–168.

Drugova E.A., Zhuravleva I.I., Zakharova U.S., Sotnikova V.E., Yakovleva K.I. (2022) Iskusstvenny intellect dlya uchebnoy analitiki i etapy pedagogicheskogo proektirovaniya: obzor resheniy [Artificial Intelligence for Learning Analytics and Instructional Design Steps: An Overview of Solutions]. Voprosy obrazovaniya / Educational Studies Moscow, no 4, pp. 107–153.

Dunlosky J., Rawson K.A., Marsh E.J., Nathan M.J., Willingham D.T. (2013) Improving Students' Learning with Effective Learning Techniques: Promising Directions from Cognitive and Educational Psychology. Psychological Science in the Public Interest, vol. 14, no 1, pp. 4–58. 10.1177/1529100612453266

Feiler J.B., Stabio M.E. (2018) Three Pillars of Educational Neuroscience from Three Decades of Literature. Trends in Neuroscience and Education, vol. 13, November, pp. 17–25.

Ferrari M., Quaresima V. (2012) A Brief Review on the History of Human Functional Near-Infrared Spectroscopy (fNIRS) Development and Fields of Application. Neuroimage, vol. 63, no 2, pp. 921–935.

Filler A. (2010) The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI. The Internet Journal of Neurosurgery, vol. 7, no 1.

Flaugnacco E., Lopez L., Terribili C., Montico M., Zois S., Schön D. (2015) Music Training Increases Phonological Awareness and Reading Skills in Developmental Dyslexia: A Randomized Control Trial. PLoS ONE, vol. 10, no 9, Article no e0138715.

Frith C. (2013) Making up the Mind: How the Brain Creates Our Mental World. Hoboken, NJ John Wiley & Sons.

Goswami U. (2017) A Neural Basis for Phonological Awareness? An Oscillatory ‘Temporal Sampling’ Perspective. Current Directions in Psychological Science, vol. 27, June, pp. 56–63.

Goswami U. (2016) Educational Neuroscience: Neural Structure-Mapping and the Promise of Oscillations. Current Opinion in Behavioral Sciences, vol. 10, May, pp. 89–96.

Goswami U. (2006) Neuroscience and Education: From Research to Practice? Nature Reviews Neuroscience, vol. 7, no 5, pp. 406–413.

Han H., Soylu F., Anchan D. M. (2019) Connecting Levels of Analysis in Educational Neuroscience: A Review of Multi-Level Structure of Educational Neuroscience with Concrete Examples. Trends in Neuroscience and Education, vol. 17, July, Article no 100113.

Hattie J. (2021) Vidimoe obuchenie dlya uchiteley. Kak povysit´ effektivnost´ pedagogicheskoy raboty [Visible Learning for Teachers. Maximizing Impact on Learning]. Moscow: Natsional´noe obrazovanie.

Hille K. (2011) Bringing Research into Educational Practice: Lessons Learned. Mind, Brain, and Education, vol. 5, no 2, pp. 63–70.

Hirsh-Pasek K., Bruer J. T. (2007) The Brain/Education Barrier. Science, vol. 317, no 5843, pp. 1293–1293.

Hoeft F., McCandliss B.D., Black J.M., Gantman A., Zakerani N., Hulme C. et al. (2011) Neural Systems Predicting Long-Term Outcome in Dyslexia. PNAS, vol. 108, no 1, pp. 361–366.

Howard-Jones P. (2014) Neuroscience and Education: Myths and Messages. Nature Reviews Neuroscience, vol. 15, no 2, pp. 817–824.

Howard-Jones P., Varma S., Ansari D., Butterworth B., De Smedt B., Goswami U., Thomas M.S.C. (2016) The Principles and Practices of Educational Neuroscience: Commentary on Bowers (2016). Psychological Review, vol. 123, no 5, pp. 620–627.

Hramov A.E., Frolov N.S., Maksimenko V.A., Kurkin S.A., Kazantsev V.B., Pisarchik A.N. (2021a) Funktsional´nye seti golovnogo mozga: ot vosstanovleniya svyazey do dinamicheskoy integratsii [Functional Networks of the Brain: From Connectivity Restoration to Dynamic Integration]. Physics - Uspekhi. vol. 64, no 6, pp. 584–616.

Hramov A.E., Maksimenko V.A., Frolov N.S., Kurkin S.A., Grubov V.V., Badarin A.A. et al. (2021b) Monitoring sostoyaniya golovnogo mozga cheloveka v zadachakh prinyatiya resheniy pri vospriyatii stimulov [Human Brain State Monitoring in Perceptual Decision-Making Tasks]. Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics, vol. 29, no 4, pp. 603–634.

Hramov A.E., Maksimenko V.A., Pisarchik A.N. (2021) Physical Principles of Brain-Computer Interfaces and Their Applications for Rehabilitation, Robotics and Control of Human Brain States. Physics Reports, vol. 918, no 6, pp. 1–133.

Hruby G.G., Goswami U. (2018) Educational Neuroscience for Reading Researchers. Theoretical Models and Processes of Literacy (eds D.E. Alvermann, N.J. Unrau, M. Sailors, R.B. Ruddell), New York, NY: Routledge, pp. 252–277.

Jiang F., VanDyke R.D., Zhang J., Li F., Gozal D., Shen X. (2011) Effect of Chronic Sleep Restriction on Sleepiness and Working Memory in Adolescents and Young Adults. Journal of Clinical and Experimental Neuropsychology, vol. 33, no 8, pp. 892–900.

Karpov O.E., Hramov A.E. (2022) Informatsionnye tekhnologii, vychislitel'nye sistemy i iskusstvennyj intellekt v medicine [Information Technologies, Computing Systems and Artificial Intelligence in Medicine]. Moscow: DPK Press.

Kedia G., Harris L., Lelieveld G.-J., van Dillen L. (2017) From the Brain to the Field: The Applications of Social Neuroscience to Economics, Health and Law. Brain Sciences, vol. 7, no 8, Article no 94.

Khramova M.V., Kuc A.K., Maksimenko V.A., Frolov N.S., Grubov V.V., Kurkin S.A. et al. (2021) Monitoring the Cortical Activity of Children and Adults during Cognitive Task Completion. Sensors, vol. 21, no 18, Article no 6021.

Klemantovich I.P., Levanova E.A., Stepanov V.G. (2016) Nejropedagogika: novaya otrasl' nauchnykh znanij [Neuropedagogy: A New Branch of Scientific Knowledge]. Pedagogika i psikhologiya obrazovaniya / Pedagogy and Psychology of Education, no 2, pp. 8–17.

Klöckner C.A., Verplanken B. (2018) Yesterday's Habits Preventing Change for Tomorrow? About the Influence of Automaticity on Environmental Behaviour. Environmental Psychology: An Introduction (eds L. Steg, J.I.M. de Groot), Oxford: Wiley-Blackwell, pp. 238–250.

Knowland V.C.P, Thomas M. (2014) Educating the Adult Brain: How the Neuroscience of Learning Can Inform Educational Policy. International Review of Education, vol. 60, no 1, pp. 99–122.

Koelsch S. (2012) The Brain and Music. Oxford, UK: Wiley-Blackwell.

Kostromina S.N., Bordovskaya N.V., Iskra N.N., Chuvgunova O.A., Gnedykh D.S., Kurmakaeva D.M. (2015) Nejronauka, psikhologiya i obrazovanie: problemy i perspektivy mezhdistsiplinarnykh issledovanij [Neuroscience, Psychology and Education: Problems and Prospects for Interdisciplinary Studies]. Psychological Journal, vol. 36, no 4, pp. 61–70.

Koziol L.F., Budding D.E., Chidekel D. (2011) Sensory Integration, Sensory Processing, and Sensory Modulation Disorders: Putative Functional Neuroanatomic Underpinnings. The Cerebellum, vol. 10, no 4, pp. 770–792.

Krueger F., Meyer-Lindenberg A. (2019) Toward a Model of Interpersonal Trust Drawn from Neuroscience, Psychology, and Economics. Trends in Neurosciences, vol. 42, no 2, pp. 92–101.

Kulikova O.V. (2014) Nejrodidakticheskiy podkhod kak faktor povysheniya kachestva obucheniya inoyazychnomu professional'nomu obshcheniyu [The Neurodidactic Approach as a Factor of Quality Improvement: Teaching Professional Communication in Foreign Languages]. Vestnik of Moscow State Linguistic University: Educationa and Teaching, no 14 (700), cc. 107–114.

Kurkin S.A., Grubov V.V., Maksimenko V.A., Pitsik E.N., Khramova M.V., Hramov A.E. (2020) Sistema dlya kontrolya i korrektirovki protsessa obucheniya mladshikh shkol'nikov na baze analiza dannykh EEG [System for Monitoring and Adjusting the Learning Process of Primary Schoolchildren Based on EEG Data Analysis]. Information and Control Systems, no 5 (108), pp. 50–61,

Lau-Zhu A., Lau M.P.H., McLoughlin G. (2019) Mobile EEG in Research on Neurodevelopmental Disorders: Opportunities and Challenges. Developmental Cognitive Neuroscience, vol. 36, March, Article no 100635.

Lăzăroiu G., Pera A., Ștefănescu-Mihăilă R.O., Mircică N., Negurită O. (2017) Can Neuroscience Assist Us in Constructing Better Patterns of Economic Decision-Making? Frontiers in Behavioral Neuroscience, vol. 11, October, Article no 188.

Leisman G. (2023) Neuroscience in Education: A Bridge Too Far or One That Has Yet to Be Built: Introduction to the “Brain Goes to School”. Brain Sciences, no 13, Article no 40.

LeDoux J.E. (1993) Emotional Memory Systems in the Brain. Behavioural Brain Research, vol. 58, no 1-2, pp. 69–79.

Liu T., Liu X., Yi L., Zhu C., Markey P.S., Pelowski M. (2019) Assessing Autism at Its Social and Developmental Roots: A Review of Autism Spectrum Disorder Studies Using Functional Near-Infrared Spectroscopy. Neuroimage, vol. 185, January, pp. 955–967.

Lo J.C., Ong J.L., Leong R.L., Gooley J.J., Chee M.W. (2016) Cognitive Performance, Sleepiness, and Mood in Partially Sleep Deprived Adolescents: The Need for Sleep Study. Sleep, vol. 39, no 3, pp. 687–698.

Maksimenko V.A., Runnova A.E., Zhuravlev M.O., Protasov P., Kulanin R., Khramova M.V., Pisarchik A.N., Hramov A.E. (2018) Human Personality Reflects Spatio-Temporal and Time-Frequency EEG Structure. PLoS One, vol. 13, no 9, Article no e0197642. pone.0197642

Malsagov A.A., Lezina V.V. (2021) Nejrodidaktika v Rossii: razvitie i perspektivy [Neurodidactics in Russia: Development and Prospects]. Mir nauki, kul'tury, obrazovaniya, no 4 (89), pp. 149–151.

Mareschal D., Johnson M., Sirios S., Spratling M., Thomas M.S.C., Westermann G. (2007) Neuroconstructivism: How the Brain Constructs Cognition. Oxford: Oxford University.

Markowitsch H.J., Welzer H. (2009) The Development of Autobiographical Memory. New York, NY: Psychology Press.

Menon V. (2016) Working Memory in Children's Math Learning and Its Disruption in Dyscalculia. Current Opinion in Behavioral Sciences, vol. 10, June, pp. 125–132.

Mercer N. (2000) Words and Minds: How We Use Language to Think Together. London: Routledge.

Miozzo M., Pulvermuller F., Hauk O. (2015) Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study. Cereb Cortex, vol. 25, no 10.

Newcombe N.S. (2016) Thinking Spatially in the Science Classroom. Current Opinion in Behavioral Sciences, vol. 10, August, pp. 1–6.

Oberman L.M., Ramachandran V.S. (2007) The Simulating Social Mind: The Role of the Mirror Neuron System and Simulation in the Social and Communicative Deficits of Autism Spectrum Disorders. Psychological Bulletin, vol. 133, no 2, pp. 310–327.

Park H.-J., Friston K. (2013) Structural and Functional Brain Networks: From Connections to Cognition. Science, vol. 342, no 6158, Article no 1238411.

Petersen S.E., Posner M.I. (2012) The Attention System of the Human Brain: 20 Years after. Annual Review of Neuroscience, vol. 35, no 1, pp. 73–89.

Pisarchik A.N, Khorev V.S., Badarin A.A., Antipov V.M., Budarina A.O., Hramov A.E. (2023) Metodologiya dizajna nejrofiziologicheskikh eksperimentov s pred"yavleniem vizual'nykh stimulov dlya otsenki urovnya vladeniya inostrannym yazykom [Methodology of the Neurophysiological Experiments with Visual Stimuli to Assess Foreign Language Proficiency]. Izvestiya VUZ. Applied Nonlinear Dynamics. vol. 31, no 2, pp. 202–224.

Pua E.P.K., Barton S., Williams K., Craig J.M., Seal M.L. (2020) Individualised MRI Training for Paediatric Neuroimaging: A Child-Focused Approach. Developmental Cognitive Neuroscience, vol. 41, no 1, Article no 100750.

Quaresima V., Ferrari M. (2019) A Mini-Review on Functional Near-Infrared Spectroscopy (fNIRS): Where Do We Stand, and Where Should We Go? Photonics, vol. 6, no 3, Article no 87.

Rea S.D., Wang L., Muenks K., Yan V. (2022) Students Can (Mostly) Recognize Effective Learning, So Why Do They Not Do It? Journal of Intelligence, vol. 10, no 4, Article no 127.

Roediger H.L. (2013) Applying Cognitive Psychology to Education: Translational Educational Science. Psychological Science in the Public Interest, vol. 14, no 1, pp. 1–3.

Rohrer D., Pashler H. (2012) Learning Styles: Where's the Evidence? Medical Education, vol. 46, no 7, pp. 634–635.

Rueda M.R. (2018) Attention in the Heart of Intelligence. Trends in Neuroscience and Education, vol. 13, November, pp. 26–33.

Ruiz-Ariza A., Grao-Cruces A., Marques de Loureiro N.E., Martínez-López E.J. (2017) Influence of Physical Fitness on Cognitive and Academic Performance in Adolescents: A Systematic Review from 2005–2015. International Review of Sport and Exercise Psychology, vol. 10, no 1, pp. 108–133.

Sala G., Fernand G. (2017) Does Far Transfer Exist? Negative Evidence from Chess, Music, and Working Memory Training. Current Directions in Psychological Science, vol. 26, no 6, pp. 515–520.

Salzman C. D., Fusi S. (2010) Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex. Annual Review of Neuroscience, vol. 33, no 1, pp. 173–202.

Sianipar A., Middelburg R., Dijkstra T. (2015) When Feelings Arise with Meanings: How Emotion and Meaning of a Native Language Affect Second Language Processing in Adult Learners. PLoS One, vol. 10, no 12, Article no e0144576.

Sigman M., Peña M., Goldin A., Riberio S. (2014) Neuroscience and Education: Prime Time to Build the Bridge. Nature Neuroscience, vol. 17, no 4, pp. 497–502.

Simons D.J., Boot W.R., Charness N., Gathercole S.E., Chabris C.F., Hambrick D.Z., Stine-Morrow E.A.L. (2016) Do “Brain-Training” Programs Work? Psychological Science in the Public Interest, vol. 17, no 3, pp. 103–186.

Sisk V.F., Burgoyne A.P., Sun J., Butler J.L., Macnamara B.N. (2018) To What Extent and under which Circumstances Are Growth Mind-Sets Important to Academic Achievement? Two Meta-Analyses. Psychological Science, vol. 29, no 4, pp. 549–571.

Shaw P., Watson M.M., Greenstein V, de Rossi P., Sharp W. (2013) Trajectories of Cerebral Cortical Development in Childhood and Adolescence and Adult Attention-Deficit / Hyperactivity Disorder. Biological Psychiatry, vol. 74, no 8, pp. 599–606.

Skau S., Helenius O., Sundberg K., Bunketorp-Käll L., Kuhn H. G. (2022) Proactive Cognitive Control, Mathematical Cognition and Functional Activity in the Frontal and Parietal Cortex in Primary School Children: An fNIRS Study. Trends in Neuroscience and Education. vol. 28, no 10, Article no 100180.

Soltanlou M., Sitnikova M.A., Nuerk H., Dresler T. (2018) Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Studying Cognitive Development: The Case of Mathematics and Language. Frontiers in Psychology, vol. 9, April, Article no 277.

Sonmez A.I., Camsari D.D., Nandakumar A.L., Vande Voort J.L., Kung S., Lewis C.P., Croarkin P.E. (2019) Accelerated TMS for Depression: A Systematic Review and Meta-Analysis. Psychiatry Research, vol. 273, March, pp. 770–781.

Soufineyestani M., Dowling D., Khan A. (2020) Electroencephalography (EEG) Technology Applications and Available Devices. Applied Sciences, vol. 10, no 21, Article no 7453.

Stepanov V.G. (2020) Nejropedagogika. Mozg i effektivnoe razvitie detey i vzroslykh: vozrast, obuchenie, tvorchestvo, proforientatsiya [Brain and Effective Development of Children and Adults: Age, Learning, Creativity, Career Guidance]. Moscow: Akademicheskiy proekt.

Stojanoski B., Wild C.J., Battista M.E., Nichols E.S., Owen A.M. (2021) Brain Training Habits Are Not Associated with Generalized Benefits to Cognition: An Online Study of Over 1000 “Brain Trainers”. Journal of Experimental Psychology: General, vol. 150, no 4, pp. 729–738.

Sunyer J., Esnaola M., Alvarez-Pedrerol M., Forns J., Rivas I. et al. (2015) Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study. PLoS Medicine, vol. 12, no 3, Article no e1001792.

Tardif E., Doudin P.-A., Meylan N. (2015) Neuromyths among Teachers and Student Teachers. Mind, Brain, and Education, vol. 9, no 1, pp. 50–59.

Tikidji-Hamburyan R.A., Kropat E., Weber G.W. (2020) Preface: Operations Research in Neuroscience II. Annals of Operations Research, vol. 289, no 1, pp. 1–4.

Thomas M.S.C. (2013) Educational Neuroscience in the Near and Far Future: Predictions from the Analogy with the History of Medicine. Trends in Neuroscience and Education vol. 2, no 1, pp. 23–26.

Thomas M.S.C., Ansari D., Knowland V.C.P. (2019) Annual Research Review: Educational Neuroscience: Progress and Prospects. Journal of Child Psychology and Psychiatry, vol. 60, no 4, pp. 477–492.

Thompson J.M., Leong V., Goswami U. (2013) Auditory Processing Interventions and Developmental Dyslexia: A Comparison of Phonemic and Rhythmic Approaches. Reading and Writing, vol. 26, no 2, pp. 139–161.

Thorndike E.L. (1913) Educational Psychology. Vol. 1. The Original Nature of Man. New York, NY: Columbia University.

Vygotskij L.S. (1934) Myshlenie i rech' [Mind and Speech]. Leningrad: Gosudarstvennoe social'no-ekonomicheskoe izdatel'stvo.

Wanalee K., Katz R., Vallée A.L. (2015) Basic Principles of Transcranial Magnetic Stimulation (TMS) and Repetitive TMS (rTMS). Annals of Physical and Rehabilitation Medicine, vol. 58, no 4, pp. 208–213.

Wazny J.H., Nathan-Roberts D. (2018) Real-Time Cognitive-State Neuroimaging in Applied Education. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 62, no 1, pp. 1157–1161. Los Angeles, CA: Sage.

Williamson B. (2019) Brain Data: Scanning, Scraping and Sculpting the Plastic Learning Brain through Neurotechnology. Postdigital Science and Education, vol. 1, no 1, pp. 65–86.

Willingham D.T. (2018) Unlocking the Science of How Kids Think: A New Proposal for Reforming Teacher Education. Education Next, vol. 18, no 3, pp. 42–49.

Willingham D.T. (2009) Three Problems in the Marriage of Neuroscience and Education. Cortex, vol. 45, no 4, pp. 544–545.

Wininger S.R., Redifer J.L., Norman A.D., Ryle M.K. (2019) Prevalence of Learning Styles in Educational Psychology and Introduction to Education Textbooks: A Content Analysis. Psychology Learning & Teaching, vol. 18, no 3, pp. 221–243,

Xu J., Zhong B. (2018) Review on Portable EEG Technology in Educational Research. Computers in Human Behavior, vol. 81, December, pp. 340–349.

Zeer E.F. (2021) Nejrodidaktika — innovatsionny trend personalizirovannogo obrazovaniya [Neurodidactics — an Innovative Trend of Personalised Education]. Vocational Education and Labour Market, no 4, pp. 30–38. P0RT.2021.47.4.002

Zull J.E. (2020) The Art of Changing the Brain: Enriching the Practice of Teaching by Exploring the Biology of Learning. Sterling, VA: Stylus.

How to Cite
KhramovaMarina V. Khramova, HramovAlexander E., and Fedorov Alexander A. 2023. “Current Trends in the Development of Neuroscientific Research in Education”. Voprosy Obrazovaniya / Educational Studies Moscow, no. 4 (December).
Research Articles