Построение системы динамических нормативов для оценки функционирования сложных систем на примере субъектов Центрального федерального округа
Аннотация
Представлен метод формирования нормативов для оценки результатов функционирования сложных систем, применимых для социо-эколого-экономических систем, с учетом приоритетов развития субъектов Российской Федерации. Методология предполагает выбор нормативных значений из набора норм, построенных по двум методам: первый основан на построении эконометрических моделей с использованием статистических данных для совокупности субъектов (первый тип) и для одного выбранного субъекта (второй тип); второй метод использует методологию байесовских интеллектуальных измерений на базе регуляризирующего байесовского подхода (третий и четвертый типы). В зависимости от результата расчетов выбирается норма, дающая более высокое (в случае высокого приоритета), среднее (в случае среднего приоритета) и меньшее (в случае низкого приоритета) нормативное значение оцениваемых результативных признаков, характеризующих развитие субъекта. Реализация метода продемонстрирована на примере регионов Центрального федерального округа, в том числе Тульской области, для которой построены эконометрические и нечеткие модели. Данными моделями отображается связь объема валового регионального продукта с численностью занятых, со стоимостью основных производственных фондов. Исследование проведено для сельского хозяйства (раздел А) и добычи полезных ископаемых (раздел С) по ОКВЭД1, образующих сырьевой сектор, по данным за 2007–2022 гг. В качестве инструментальных средств применены программные платформы «ЭФРА» и «Инфоаналитик 2.0». Полученные результаты могут быть использованы региональными органами управления при формировании нормативов для оценки результатов функционирования областей в краткосрочном и среднесрочном периодах.
Исследование выполнено за счет гранта Российского научного фонда № 24-28-20020 и Тульской области.
Скачивания
Литература
Zhukov R.A. (2019) Socio-ecological-economic systems: Theory and practice. Moscow: INFRA-M (in Russian). https://doi.org/10.12737/monography_5b7516626665a8.43347695
Zhukov R.A. (2023) Modeling the development of hierarchical socio-economic systems based on a multi-level optimization approach. Moscow: Financial University under the Government of the Russian Federation (in Russian).
Andreev A.V. (2018) Theoretical foundations of reliability of technical systems. St. Petersburg: Publishing House of the Polytechnic University (in Russian).
Matushkina I.Y., Onishchenko L.A. (2018) Technical regulation: technical regulations and standardization: a textbook. Yekaterinburg: Ural University Publishing House (in Russian).
Belik A.G. (2018) Quality and reliability of software systems: textbook. Omsk: Publishing House of OmSTU (in Russian).
He D., Kang Hou K., Li X.X., Wu S.Q., Ma L.X. (2023) A reliable ecological vulnerability approach based on the construction of optimal evaluation systems and evolutionary tracking models. Journal of Cleaner Production, vol. 419, 138246. https://doi.org/10.1016/j.jclepro.2023.138246
Mezenina O.B. (2023) Economics of environmental management: economic efficiency of environmental protection costs of an industrial enterprise: a textbook. Yekaterinburg, UGLTU (in Russian).
Dmitriev V.V., Kaledin N.V. (2016) Russian Northwest: An integral assessment of the conditions of regional social, environmental and economic systems and quality of life. Baltic Region, vol. 8, no. 2, pp. 125–140 (in Russian). https://doi.org/10.5922/2074-9848-2016-2-7
Kleiner G.B., Rybachuk M.A. (2019) System balance of the Russian economy: Regional perspective. Economy of Region, vol. 15, no. 2, pp. 309–323 (in Russian). https://doi.org/10.17059/2019-2-1
Palash S.V. (2017) Structural balance of the economy: government programs for industrial development in the Russian Federation. St. Petersburg State Polytechnic University Journal of Engineering Science and Technology, vol. 10, no. 1, pp. 53–72 (in Russian). https://doi.org/10.18721/JE.10105
Sun X., Liu X., Li F., Tao Y., Song Y. (2017) Comprehensive evaluation of different scale cities sustainable development for economy, society, and ecological infrastructure in China. Journal of Cleaner Production, vol. 163, pp. 329–337. https://doi.org/10.1016/j.jclepro.2015.09.002
Makarov V.L., Aivazyan S.H., Afanasiev M.Yu., Bakhtizin A.R., Nanavyan A.M. (2014) The estimation of the regions’ efficiency of the Russian Federation including the intellectual capital, the characteristics of readiness for innovation, level of well-being, and quality of life. Economy of Region, vol. 4, pp. 9–30 (in Russian). https://doi.org/10.17059/2014-4-1
Mikhalchuk A.A., Chistyakova N.O., Akerman E.A., Tatarnikova V.V. (2022) Evaluation methods of the technical efficiency of the Siberian Federal District regions using the production possibilities curve. Vestnik NSUEM, no. 4, pp. 76–91 (in Russian). https://doi.org/10.34020/2073-6495-2022-4-076-091
Mishra S.K. (2010) A brief history of production functions. The UIP Journal of Managerial Economics, UIP Publications, vol. 8, no. 4, pp. 6–34.
Zhukov R.A., Kozlova N.A., Manokhin E.V., Plinskaya M.A. (2022) Construction of an aggregated production function with implementation based on the example of the regions of the Central Federal District of the Russian Federation. Business Informatics, vol. 16, no. 3, pp. 7–23. https://doi.org/10.17323/2587-814X.2022.3.7.23
Zhukov R., Kuznetsov G., Manokhin E., Gorodnichev S., Plinskaya M. (2023) Balanced functioning of socio-economic systems: regional perspective. Journal of Law and Sustainable Development, vol. 11, no. 12, e1922. https://doi.org/10.55908/sdgs.v11i12.1922
Pedroza C. (2006) A Bayesian forecasting model: predicting U.S. male mortality. Biostatistics, vol. 7, no. 4, pp. 530–550.
Long K.Q. (2021) Clustering lifestyle risk behaviors among Vietnamese adolescents and roles of school: A Bayesian multilevel analysis of global school-based student health survey 2019 / K.Q. Long, H.T. Ngoc-Anh, N.H. Phuong et al. The Lancet Regional Health – Western Pacific, vol. 15, 100225. https://doi.org/10.1016/j.lanwpc.2021.100225
Gallardo M. (2022). Measuring vulnerability to multidimensional poverty with Bayesian network classifiers. Economic Analysis and Policy, vol. 73, pp. 492–512. https://doi.org/10.1016/j.eap.2021.11.018
Prokopchina S.V. (2019) Soft calculations and measurements. Methods, information technologies and means of intellectual information processing in digitalization tasks: monograph. Moscow: Scientific Library (in Russian).
Prokopchina S.V., Shcherbakov G.A., Efimov Yu.V. (2019) Modeling of socio-economic systems in conditions of uncertainty. Moscow: Scientific Library (in Russian).
Berezin A.S., Zhukov R.A., Prokopchina S.V. (2022) Bayesian intellectual measurements of indices and indicators of regional availability of cultural objects. Soft Measurement and Computing, vol. 53, no. 4, pp. 5–15 (in Russian). https://doi.org/10.36871/2618-9976.2022.04.001
Zhukov R.A., Grigoriev E.V., Plinskaya M.A., Zhelunitsina M.A. (2022) On the dynamics of mortality in the Tula region. Soft Measurement and Computing, vol. 60, no. 11-2, pp. 30–38 (in Russian). https://doi.org/10.36871/2618-9976.2022.11-2.003
Zhukov R.A., Prokopchina S.V., Bormotov I.V., Manokhin E.V., Rudneva I.D. (2024) The model of the value system of Russian youth based on Bayesian intellectual measurements. MIR (Modernization. Innovation. Research), vol. 15, no. 1, pp. 96–114 (in Russian). https://doi.org/10.18184/2079-4665.2024.15.1.96-114
Zhukov R.A. (2020) An approach to assessing the functioning of hierarchical socio-economic systems and decision-making based on the EFRA software package. Business Informatics, vol. 14, no. 3, pp. 82–95. https://doi.org/10.17323/2587-814X.2020.3.82.95
Zhukov R.A., Prokopchina S.V. The Infoanalyst 2.0 software package. Certificate of state registration of the computer program No. 2024617544 dated 04.03.2024. Available at: https://fips.ru/EGD/0b443bd3-982b-41db-a413-b1b035d9c596 (accessed 24 October 2024) (in Russian).
Zhukov R.A. (2021) Method for assessing the results of hierarchical socio-economic systems’ functioning based on the aggregated production function. Economics and Mathematical Methods, vol. 57, no. 3, pp. 17–31 (in Russian). https://doi.org/10.31857/S042473880016428-9
Zhukov R.A., Kozlova N.O., Manokhin E.V., Myasnikova E.B., Melay E.A. (2023) Multi-criteria optimization as the methodology of ensuring sustainable development of regions: Tula region of the Russian Federation. International Journal of Sustainable Development and Planning, vol. 18, no. 4, pp. 1057–1068. https://doi.org/10.18280/ijsdp.180408
Prokopchina S.V. (2021) Fundamentals of the theory of scaling in economics: textbook. Moscow: Scientific Library (in Russian).
Federal State Statistics Service (2024) Regions of Russia. Socio-economic indicators. Available at: https://rosstat.gov.ru/folder/210/document/13204 (accessed 24 October 2024) (in Russian).
Unified Interdepartmental Information and Statistical System (EMISS). Available at: https://www.fedstat.ru (accessed 24 October 2024) (in Russian).
Rating of socio-economic development of regions in 2022. Available at: https://realnoevremya.ru/attachments/1760 (accessed 24 October 2024) (in Russian).
The gross structure of the regional product in 2022. Available at: https://www.fedstat.ru/indicator/59450 (accessed 24 October 2024) (in Russian).
Tables of inflation. Available at: https://уровень-инфляции.рф/таблицы-инфляции (accessed 24 October 2024) (in Russian).
Zhukov R.A., Plinskaya M.A., Manokhin E.V. (2022) Assessment of the regions functioning based on production functions with the above cost factors. Journal of Applied Economic Research, vol. 22, no. 3, pp. 657–682. https://doi.org/10.15826/vestnik.2023.22.3.027
The results of model testing. Available at: https://disk.yandex.ru/i/CJFtrRDuWYsdsg (accessed 24 October 2024) (in Russian).