
30 BUSINESS INFORMATICS №2(32)–2015

XOQL: OBJECT QUERY MARKUP LANGUAGE

Pavel P. OLEYNIK
System Architect Software, Aston Company; Associate Professor, Shakhty Institute (branch),
Platov South Russian State Polytechnic University (NPI)

Address: 1, Lenin square, Shakhty, Rostov Region, 346500, Russian Federation
E-mail: xsl@list.ru

Modern corporate information systems (CIS) are designed by employing object-oriented paradigm and concepts.
This approach is often applied both to implement client applications and to build a server component (target DBMS).
The application of object-oriented design pattern in software development enables to save business objects from RAM to
persistent memory. This paper focuses on XOQL (XML Object Query Language) - an object query language that uses
XML to describe syntax. This article presents a deep and comprehensive review of existing publications. Abundance of
examples enables to demonstrate various currently available languages.

This paper suggests a feasible option to present basic syntactic constructions of object query language in the form of
XML-documents. Prior to syntax design the optimality criteria have been formulated (these are described in detail in
this paper). Query language syntax extensions are outlined in addition to basic ones, as well as extension approaches
by involving proprietary constructions. An optimal language structure is presented accompanied by descriptions of tags,
attributes and admissible values. At the end of this article there are plenty of examples of various common queries.

Key words: object query language, corporate information systems, query language, markup language, XML, databases.

Citation: Oleynik P.P. (2015) XOQL: Object Query Markup Language. Business Informatics, no. 2 (32), pp. 30–38.

1. Introduction

E
xtensible Markup Language (XML) is used to

represent semi-structured data, i.e. informa-

tion, which structure is unknown or is antici-

pated to face profound future changes [1]. Due to its

flexibility, visibility and existence of a large number of

supporting technologies this language is utilized in dif-

ferent parts of a corporate information system (in serv-

er database, client application, server applications).

One of tasks requiring retention of information, which

structure is unknown in advance, is a task to present

syntax of a data query language (QL) (for example,

SQL, OQL, LINQ, etc.). Implementation of these QL

as XML-documents will enable to unify the data ma-

nipulation process, which in this case does not depend

on any specified data source (file system, RDBMS,

OODBMS, etc.).

The suggested syntax may be used at the transport level

to transmit queries between levels and tiers in a complex

information system. To generate queries and to perform

syntax parsing one may use third-party libraries, which

are available on target client or server platform.

Classic implementation of a syntax representation of

a query language in a software application is in the form

of text strings containing key words [2], pertaining to re-

spective grammar. In doing so, full implementation of

such QL entails (according to the author) the following

disadvantages:

1. The necessity to carry out a comprehensive seman-

tic analysis for syntax by itself. Interdemand to develop

strings handling classes, which will check a particular

query for grammar and syntax to build a tree for added

tokens of a query language.

2. The necessity to build a class hierarchy to generate

a query construction. Modern applications are designed

on object-oriented programming languages (OOPL)

and manipulate instances of classes, calling their meth-

ods and assigning attribute values. It is best to use the

generation of a query by creating a class instance (ob-

ject) of syntax constructions.

SOFTWARE ENGINEERING

31BUSINESS INFORMATICS №2(32)–2015

Using XML to present a query language syntax would

allow to avoid the above listed disadvantages and inde-

pendent language from specific DBMS used to store in-

formation.

The plurality of XML analyzers and parsers for client

and server applications enables to simplify the process of

syntactic and semantic analysis. These parsers have an

object model to generate programmatically the structure

of XML documents, which constitute an object query in

this case.

2. Related papers

and technologies

All existing literature can be divided into three major

categories:

1. Papers, which describe implementation of query lan-

guages in object-relational mapping (ORM) tools;

2. Articles, which deal with domain-specific query lan-

guage, research in certain data domains;

3. Publications, which specify ways of using XML-docu-

ments in certain syntax constructions of query languages.

Each of these categories is described in detail in the

following subsections.

2.1. Query languages,

implemented in ORM-tools

Currently object-relational mapping (ORM) tools

have been increasingly used in information system de-

sign to implement an object system in relational DBMS.

Every ORM-tool implements its own object query lan-

guage dialect. For example, Hibernate software product

supports HQL and incorporates a rich class object mod-

el designed to generate a query [14].

HQL-query is recorded in the <query> tag in the

CDATA section, and its structure is similar to SQL. It

does not use the possibility of organizing a hierarchy of

nodes for a clearer presentation of a structure and syntax

of an object query, i.e. HQL developers have resorted to

classical implementation, as described above, involving

a syntax analysis and verification of certain strings of de-

fined grammar; a built-in hierarchy of classes has been

developed as well to support a query generation.

Enterprise JavaBeans (EJB), a technology that can be

regarded as ORM-tool implemented on Java language,

supports EJB-QL query language that enables various

manipulations with objects (to select, to insert, to up-

date, to delete, etc.) [12]. It is possible to write EJB-QL-

query in a configuration file (in the descriptor deploy-

ment) that is a XML-document.

A query that uses only one <ejb-ql> tag consists of

strings of SQL-like QL. Therefore, it suffers from the

above listed drawbacks.

2.2. Domain-specific

query languages

Query language design issues are discussed in theo-

retical papers dealing with object-relational mapping

patterns. Article [13] describes QL implementation

that enables to select class instances from a RDBMD-

based object system, and a query can be built based

on a XML-schema published in the above mentioned

paper.

This implementation makes it possible to extract main

temporal data, and it is used in a specific data domain

(medical IS). Therefore, the language is not orthogonal

to the data domain and cannot be used as the main in-

formation system in a different profile.

It is possible to include a specific language — CAML

(Collaborative Application Markup Language) into this

category of papers; it is presented in [21-22] and em-

ploys Windows SharePoint Services that supports a sin-

gle cross-enterprise electronic workflow.

To extract data the <Query> tag is used; the <Where>

inner node enables to create complex expressions with

a combination of comparison and logical operations. In

each comparison operation the <FieldRef> tag is uti-

lized to indicate links in a field, and the <Value> node

presents a comparable value. Note that the <Value>

node can contain either a constant or a field name. In

this complex arithmetic expression a similar text string

should be specified. More correctly, this needs to be

done with nested tags, thus providing an opportunity to

describe complex expressions.

Let’s consider another domain-specific markup lan-

guage. KDDML (KDD Markup Language) is used as

an intermediate language to extract information through

knowledge discovery CISs. [23-24].

To formulate a query the <KDD_QUERY> root tag

is used; it enables to identify a query unambiguously by

using a name specified in the «name» attribute. Then,

this query can be executed using a name in the <CALL_

QUERY> tag. To determine a structure of decision trees

generated for data analysis and extraction the <TREE_

MINER> XML-element is utilized. The xml_dest at-

tribute specifies a location, where output data will be

saved. Therefore, this language can only be used in

knowledge-based decision support systems. Substantive

findings of the literature review suggest that a domain-

SOFTWARE ENGINEERING

32 BUSINESS INFORMATICS №2(32)–2015

specific query language cannot be used as a uniform data

query language.

2.3. Methods for presentation

of certain syntactic constructions

of query languages as XML

Papers within this category most closely correspond

to tasks addressed in this article, because these offer a

unified approach to certain syntactic constructions of

QL. This problem has been solved in XSQL [20], where

a markup language has been designed to describe SQL-

query structures.

The root element is the <xsql> tag, containing one or

more queries that are described in the <query> tag. First

of all, we are interested in a set of tags, which are used

to extract data, therefore, let’s consider the <select>

child nodes tag. The <table_column> node indicates a

field name (<column>) and a corresponding table name

(<table>). XSQL doesn’t offer any simple way to specify

columns to be extracted and to set alias for a field. To

specify conditions for data filtering the <conditional>

tag is used that contains predicates in the form of string

expressions.

To create complex queries and queries with parame-

ters the <statement> tag that contains the SQL-query is

utilized. This approach to query description suffers from

the above mentioned disadvantages relating to ORM-

tools (Sec. 2.1).

Unfortunately, at present the XSQL project is no

longer being developed and now only dtd-description

of some constructions is available, that is clearly not

enough to describe queries for a real-world application.

Another approach developed for submission to logical

conditions for SQL language filter (for submission of de-

sign directives) is described in [25] that deals with SIML

(Software Integration Markup Language).

SIML uses the <sql> tag that specifies a list of fields

and tables, which information must be selected to be

written as a SQL-string. This approach has the above

listed disadvantages.

Use the <filters> child XML-node that contains con-

ditions for data filtering. Each individual comparison

condition is created by the <query> tag: a field name is

specified in the <field> tag, and a value is indicated in

the <value> tag.

Basically, [25] describes equality comparison opera-

tions only. Construction of predicates, containing com-

plex logical expressions with multiple operations, is not

covered in the above mentioned paper. Also, an idea of

two opposite approaches to description of selected fields

(as a string SQL-query) and filtering conditions (as a set

of nested tags) constitutes a serious disadvantage, that

manifests itself in the impossibility of writing a query

for data extraction from a number of tables and imple-

mentation of join – operations. These deficiencies have

resulted from the fact that SIML had been designed as

a language aimed to integrate data stored in different

sources, and not as a QL.

A study, where SQL syntax presentation principles

have been elaborated most comprehensively, refers to

ZsqlML project (Zenark’s XML for SQL) [26].

Though ZsqlML offers a number of advantages (like

all other languages, outlined earlier in this section, in-

volving nested SQL constructs), it has a huge drawback:

it is intended for submissions to SQL syntax that lacks

many object extensions and is used often to develop ob-

ject-oriented applications.

Summarizing the review of all three categories of pa-

pers, one could argue that each of the considered ap-

proaches (and tools) has a number of disadvantages. The

following sections of this paper describe an implement-

ed query language syntax that lacks the above mentioned

weaknesses.

3. Implementation

of XOQL query language

Modern corporate information systems (CIS) are de-

signed by employing the object-oriented paradigm. To

develop an objective data domain model software appli-

cation that enables to save business object to persistent

memory the following approaches are used often:

1. The use of an object-oriented DBMS for data

storage. The functional capabilities of object-oriented

DBMSs are specified in ODMG 3.0 Standard [16-17].

2. Implementation of application’s business logic in

object-relational DBMS. Object extensions of relational

DBMSs are regulated by SQL:2003 Standard [10].

3. Implementation of an object system in relational

DBMS environment (object relational mapping, ORM)

[13, 15].

Every tool that implements one of these approaches

provides the developer with a specified query language.

In author’s opinion, the most developed one is the ob-

ject query language (OQL, Object Query Language).

Its latest specification is presented in «The Object Data

Standard: ODMG 3.0» [16]. At the same time, each

manufacturer of an object-oriented DBMS (OOD-

BMS) supports a subset of language constructions (their

own dialect) [17].

SOFTWARE ENGINEERING

33BUSINESS INFORMATICS №2(32)–2015

3.1. Optimality criteria to be implemented

in a query language

The main advantage of XML is the availability of a

large number of interrelated technologies that define and

control the syntax (semantic) structure of an application

(language), which creation doesn’t necessitate any par-

tial parsing, as this case implies a performed parser [3].

Modern OO-languages include a class library and XML

parser [3-6]. In addition, the latest versions of popular

DBMS, such as Oracle, MS SQL Server and DB2, sup-

port embedded data XML type that is currently included

in SQL 2003 standard [7-10].

To define valid structures of QL to be followed by a

syntax analysis (in our case – parsing) various technolo-

gies can be used, for example, by creating DTD-defi-

nitions or by involving XSD-(XDR-) schemes. If this

is not enough, a syntactic (and semantic) analysis can

be performed by using queries in XQuery language that

enables to return individual elements (nodes) of a XML-

document [11].

To build a semantic structure in XOQL optimality

criteria need to be formulated, and these should corre-

spond to QL implementation (OCQL):

1. Independence of a data domain pertaining to a de-

veloped software application. This will enable to unify

QL and to apply it in any information system. There-

fore, it is necessary to identify the structure of common

query language XML-nodes with such names as <Se-

lect>, <From>, <Where>, etc, as its name indicates

that selected tags are not relevant to data domain, but

describes various elements of QL.

2. A clear structure of a query, implemented with a

set of nested XML-nodes. Nested XML-nodes are of-

ten used to ensure the most accurate display, in particu-

larly, in the hierarchy of QL commands. For example,

the <Where> element should be inside the <Select> el-

ement, as it indicates a data filtering condition and de-

termines the Select type of a request (data extraction).

Correctness of embedded XML-nodes can be checked

during query parsing by employing dependent technolo-

gies, as described above.

3. The possibility to extend query language syntax by

introducing new constructs using nodes and attributes.

Because a query structure does not depend on a data

source (OCQL4), the addition of any new tags (and at-

tributes) does not affect applications that use older ver-

sions of the syntax, i.e. expansion will occur in accord-

ance with the backward compatibility principles. Since a

query is executed on a data source (e.g., RDBMS), pro-

cedures need to be developed to transform a XML-spe-

cific query into QL that is supported by a source. When

adding a new element representing specific query lan-

guage syntax a target DBMS requires adjustment proce-

dures for transformation.

4. Availability of basic syntactic constructions, which

are presented in Object Query Language (OQL). Key

features of the object query language include: 1) a path

expression to describe complex relationships between

classes, and 2) possibility to extract as a part of a projec-

tion not only an atomic value from an attribute class, but

whole objects (class instance). Its implementation (and

a backlog) will provide a developer with a functional IS

offering ample opportunities to select, update and de-

lete data, similar to modern QL implemented in many

popular OODBMS, ORM-tools and in distributed ob-

ject applications.

5. Independence from any data source, data mod-

el and application architecture. Despite the fact that a

query language should support syntactic constructions

of an object query language (OQL), the same query can

be used to manipulate (to select, to update, to delete)

information physically stored in different data sources

(OODBMS, ORM-tools, ORDBMS, etc.). For each

data source the transformation procedure developed in

the dialect supports QL. Given the magnitude of today’s

ERP, and the fact that client applications can simulta-

neously work with multiple DBMS, implementation of

the above listed criteria will enable to reduce the cost of

developed applications operating in heterogeneous en-

vironments. The language syntax does not depend on

architecture of applications, and transformation in QL

supported data source can be performed at any tier (lay-

er) of a software application.

3.2. XOQL language syntax

constructions

In order to determine allowable syntax semantics QL

describes XML-schema (Fig. 1). The<XOQL> tag is

rooted in any XOQL-query; it has an attribute version,

designed to describe a version of a query language. The

value of this attribute is analyzing of a program that car-

ries out transformation of XOQL-query into QL sup-

ported by a target DBMS. This technique offers organ-

ized support for backward compatibility, which allows

applications to deal with different versions of the lan-

guage. The <Select> child element indicates that a que-

ry selects information from the repository. Since other

types of queries (inserting, deletion and modification)

are not considered in this paper, the relevant syntactic

structure (presented by XML-tags) is absent in Fig. 1.

SOFTWARE ENGINEERING

34 BUSINESS INFORMATICS №2(32)–2015

Inside the <Select> element the <SelectOptions>

optional tag may be used to indicate various options af-

fecting the data selection. For example, using the <To-

pRowCount> child node one can restrict the output set

of the first N objects, where N is a positive integer. Com-

position and structure of available options depend on a

query language supported by a target database, used as

an information repository for application development.

To describe elements of a projection of a returned data

set the <SelectItems> tag is used. Each element is de-

fined in the <SelectItem> XML-node and may contain

an alias (specified as the Alias attribute value) under

which it will be returned to a client application, i.e. the

Alias attribute is utilized as an equivalent to directives

«as» in data selection (using the «select» operator) in

SQL.

To extract objects as items of a projection the <In-

stanceAlias> tag is applied, it contains a collection of de-

clared alias accessible through the <FromItem> node. To

select data the <Attribute> tag is used. If an attribute is

represented by an atomic literal data type (string, integer,

the number of fixed-point, etc.) and is uniquely deter-

mined by its affiliation to any type of element collections,

it is sufficient to indicate only its name (as the value of a

XML-element). If the name of an attribute disallows to

unambiguously determine an element type in a collection,

that happens, when there are several attributes with iden-

tical names in one scope (of a variable), the <InstanceAli-

as> tag is employed to specify a desired alias collection. In

this case the «attribute» name of a class is defined as the

value of the <AttributeName> XML-element.

To extract an attribute value to describe an aggregated

class of a written path expression the alternative nested

tags (<Attribute> and <ReferenceJoin>) are used.

If a value to be selected must be assigned to any specif-

ic class (type) (in order to select an instance of a derived

Fig. 1. XML-schema that describes basic syntactic constructions of XOQL

SOFTWARE ENGINEERING

35БИЗНЕС-ИНФОРМАТИКА №2(32)–2015 г.

class by referring to a basic class), its name need to be

inserted as the value of the <SelfClass> node.

The <From> tag allows to specify various collections

(using <FromItem> nested nodes) in the Cartesian

product that constitutes a source for data extraction. A

collection can serve as an extent containing objects of a

specified class and class description by using a path ex-

pression from a track before an assigned collection. In

the first case, the <Class> tag, containing the name of a

class is used to return objects, and in the second case, the

<InstanceAlias> XML-node, containing the name of a

alias assigned earlier for a particular collection, or the

<Attribute> item, extracting an attribute type (class), is

used. The «Alias» attribute is utilized to specify alias col-

lections for subsequent references to value setting in the

<InstanceAlias> tag.

To describe a logical predicate that imposes conditions

for data extraction filtration the <Where> tag is used.

The figure shows that a logical operation (and, or, not,

xor), and comparison operations (> =, <, etc.) can be

specified in this tag.

In view of what is stated in the foregoing it appears

that XOQL does meet all optimality criteria formulated

for the query language in sect. 3.1.

3.3. Test example:

XOQL-query

Let’s consider some XOQL-queries, which clearly

demonstrate the underlying principles of object queries

representation through XML. It is assumed that data is

extracted from a test object model.

Fig. 2. Object query that has extracted information about companies registered in Moscow: QQL – at the left, XOQL – at the right

SOFTWARE ENGINEERING

36 BUSINESS INFORMATICS №2(32)–2015

Let’s consider a complex example (Fig. 2) of an XO-

QL-query involving extraction of name, contact phone

number and registered office address of a Moscow

company.

The «from» operator (the <FromItem> tag) indicates

that data selection has been performed from two collec-

tions (extents), containing instances of the Company

and Address classes, respectively. Aliases are assigned to

extents («c» and «a», respectively), for which the «Alias»

attribute has been used. Then the new name is used in

the <InstanceAlias> tag with the declaration of the pro-

jection item of the resulting data set (the <Select> tag),

and with reference to the previously announced collec-

tion of the <FromItem> XML-node. Fig. 2 (at the right)

demonstrates the «CompanyName» indication alias

a for projection item under which it will be presented

in the resulting dataset that is realized by assigning the

«Alias» value attribute (the <SelectItem> tag).

A predicate that imposes restrictions on the result-

ing projection (to choose only organizations registered

in Moscow) is specified by using the <Where> tag that

contains a combination of logical, arithmetic and com-

parison operations. For comparison purposes, the «City»

value attribute of the «CompanyAddress» class on equal-

ity constantly applies the <Equal> tag, where there are

two nested nodes (<Attribute>, <ConstValue>) used to

submit the name attribute and the «Moscow» constant,

respectively.

These examples of XOQL-queries demonstrate the

wide possibilities of developed QL and the use of syntac-

tic structures, presented in the form of XML-tags and

attributes.

Note that the resulting XOQL-query is more cumber-

some than the original one and contains more than 40

lines of XML markup. However, the use of third-party

libraries and parsers eases generation of such queries.

4. Conclusion and future research

Further research should concentrate on expansion of

the proposed additional syntax constructions used for

data selection (order by, group by, having, etc.) and de-

scription of directives to add new data (the insert opera-

tor), edit (the update operator) and remove (the delete

operator) to existing data. In addition, syntactic con-

structions are needed to describe nested subqueries.

Also, it is imperative to develop and to implement an

algorithm to transform XOQL-queries into a certain

dialect of a query language (e.g., SQL), supported by a

specific DBMS.

References

1. Graves M. (2001) Designing XML databases. Prentice Hall PTR.

2. Aho A., Lam M., Sethi R., Ullman J. (2006) Compilers: Principles, techniques and tools. Addison Wesley.

3. Holzner S. (2003) Real World XML (2nd Edition). Peachpit Press.

4. Albahari J., Albahari B. (2012) C# 5.0 in a Nutshell, 5th Edition. The Definitive Reference. O’Reilly Media.

5. Perrone P.J., Venkata S.R., Chaganti K.R. (2000) Building Java enterprise systems with J2EE. Sams Publishing.

6. Wood K. (2003) Delphi developer’s guide to XML, 2nd Edition. Wordware Publishing.

7. Wang J. (2011) Oracle Database 11g Building Oracle XML DB Applications. Oracle Press.

8. Mistry R., Misner S. (2014) Introducing Microsoft SQL Server 2014. Microsoft Press.

9. Mullins C. (2012) DB2 Developer’s guide – A solutions-oriented approach to learning the foundation and capabilities

of DB2 for z/OS, 6th Edition. IBM Press.

10. SQL: 2003 specification. Available at: http://www.wiscorp.com/sql_2003_standard.zip (accessed 10 January 2015).

11. XQuery 3.0 use cases. W3C Working Group Note 08 April 2014. Available at: http://www.w3.org/TR/xquery-30-

use-cases/ (accessed 10 January 2015).

12. Rubinger A.L., Burke B. (2010) Enterprise JavaBeans 3.1, 6th Edition. O’Reilly Media.

13. Nadkarni P.M., Brandt C.A., Morse R., Matthews K., Sun K., Deshpande A.M., Gadagkar R., Cohen D.B.,

Miller P.L. (2003) Temporal query of attribute-value patient data: utilizing the constraints of clinical studies.

International Journal of Medical Informatics, no. 70, pp. 59–77.

14. Leonard A. (2013) Pro Hibernate and MongoDB. Apress.

15. Fowler M. (2002) Patterns of enterprise application architecture (Addison-Wesley Signature Series). Addison-

Wesley Professional.

16. Cattell R.G., Barry D.K. (2000) The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers.

17. Jordan D. (1998) C++ Object Databases: Programming with the ODMG standard. Addison-Wesley.

18. Mathematical Markup Language (MathML) Version 2.0. Second Edition. Available at: http://www.w3.org/TR/

MathML2/chapter4.html#id.4.4.3 (accessed 10 January 2015).

SOFTWARE ENGINEERING

37BUSINESS INFORMATICS №2(32)–2015

19. Grand M. (1998) Patterns in Java. Volume 1. A catalog of reusable design patterns illustrated with UML. John Wiley

& Sons.

20. XSQL – Combining XML and SQL. Available at: http://xsql.sourceforge.net/manual.php (accessed 10 January

2015).

21. Collaborative Application Markup Language (CAML) structure specification. Available at: http://download.

microsoft.com/download/8/5/8/858F2155-D48D-4C68-9205-29460FD7698F/%5BMS-WSSCAML%5D.

PDF (accessed 10 January 2015).

22. Fox S., Johnson C., Follette D. (2013) Beginning SharePoint 2013 Development. Wrox.

23. KDDML: A middleware language and system for knowledge discovery in databases. Available at: http://kdd.di.unipi.

it/kddml/papers/kddml.pdf (accessed 10 January 2015).

24. KDDML language: Reference guide. Available at: http://kdd.di.unipi.it/kddml/downloads/documentazione/

Specifiche/kddml_specification_2_0_16.pdf (accessed 10 January 2015).

25. Xu Y., Shi M. (2004) SQL Markup language for enterprise integration. Proceedings of the 2004 IEEE International

Conference on Services Computing (SCC 2004), 15-18 September 2004, Shanghai, China, pp. 413–416.

26. ZsqlML (Zenark’s XML for SQL). Available at: http://sourceforge.net/projects/zsqlml/ (accessed 10 January

2015).

27. Butek R. (2005) Web services tip: Use polymorphism as an alternative to xsd:choice. Available at: http://www.ibm.

com/developerworks/webservices/library/ws-tip-xsdchoice.html (accessed 10 January 2015).

XOQL: ОБЪЕКТНЫЙ ЯЗЫК ЗАПРОСОВ

П.П. ОЛЕЙНИК
кандидат технических наук, системный архитектор программного обеспечения,
ОАО «Астон»; доцент, Шахтинский институт (филиал), Южно-Российский
государственный политехнический университет (НПИ) им. М.И. Платова

Адрес: 346500, Ростовская область, г. Шахты, пл. Ленина, д. 1

E-mail: xsl@list.ru

Современные корпоративные информационные системы (КИС) разрабатываются с применением
объектно-ориентированной парадигмы и проектируются в понятиях объектно-ориентированного
дизайна. Этот подход часто применяют как при реализации клиентского приложения, так и при
создании серверного уровня, реализованного в среде целевой СУБД. Применение принципа предметно-
ориентированного проектирования при разработке программного обеспечения позволяет организовать
процесс сохранения объектов из оперативной в долговременную память. Данная статья посвящена
описанию языка XOQL (XML Object Query Language), который представляет собой объектный язык
запросов и для описания синтаксиса использует XML. В статье проведен глубокий и всесторонний анализ
имеющихся работ. Обилие большого количества примеров позволяет продемонстрировать различные
имеющиеся на сегодняшний день языки.

В работе представлен один из возможных вариантов представления базовых синтаксических
конструкций объектного языка запросов в виде XML-документов. Перед проектированием синтаксиса
были выделены критерии оптимальности, которые подробно описаны в работе. Кроме базовых, описаны
синтаксические расширения языка запросов и способы расширения собственными конструкциями.
Представлена структура реализованного оптимального языка с описанием тегов, атрибутов и
допустимых значений.

В конце статьи представлено множество примеров различных видов запросов, часто встречающихся
на практике.

SOFTWARE ENGINEERING

38 БИЗНЕС-ИНФОРМАТИКА №2(32)–2015 г.

Ключевые слова: объектный язык запросов, корпоративные информационные системы, язык запросов,

язык разметки, XML, базы данных.

Цитирование: Oleynik P.P. XOQL: Object Query Markup Language // Business Informatics. 2015. No. 2 (32). P. 30–38.

Литература

1. Graves M. Designing XML databases. Prentice Hall PTR, 2001. 688 p.

2. Aho A., Lam M., Sethi R., Ullman J. Compilers: Principles, techniques and tools. Addison Wesley, 2006. 1000 p.

3. Holzner S. Real World XML (2nd Edition). Peachpit Press, 2003. 1200 p.

4. Albahari J., Albahari B. C# 5.0 in a Nutshell, 5th Edition. The Definitive Reference. O’Reilly Media, 2012. 1064 p.

5. Perrone P.J., Venkata S.R., Chaganti K.R. Building Java enterprise systems with J2EE. Sams Publishing, 2000. 1536 p.

6. Wood K. Delphi developer’s guide to XML, 2nd Edition. Wordware Publishing, 2003. 545 p.

7. Wang J. Oracle Database 11g Building Oracle XML DB Applications. Oracle Press, 2011. 416 p.

8. Mistry R., Misner S. Introducing Microsoft SQL Server 2014. Microsoft Press, 2014.

9. Mullins C. DB2 Developer’s guide – A solutions-oriented approach to learning the foundation and capabilities of DB2 for z/OS, 6th

Edition. IBM Press, 2012. 728 p.

10. SQL: 2003 specification. [Электронный ресурс]: http://www.wiscorp.com/sql_2003_standard.zip (дата обращения: 10.01.2015).

11. XQuery 3.0 use cases. W3C Working Group Note 08 April 2014. [Электронный ресурс]: http://www.w3.org/TR/xquery-30-use-cases/

(дата обращения: 10.012015).

12. Rubinger A.L., Burke B. Enterprise JavaBeans 3.1, 6th Edition. O’Reilly Media, 2010. 766 p.

13. Nadkarni P.M., Brandt C.A., Morse R., Matthews K., Sun K., Deshpande A.M., Gadagkar R., Cohen D.B., Miller P.L. Temporal query

of attribute-value patient data: utilizing the constraints of clinical studies // International Journal of Medical Informatics. 2003. No. 70.

P. 59–77.

14. Leonard A. Pro Hibernate and MongoDB. Apress, 2013. 384 p.

15. Fowler M. Patterns of enterprise application architecture (Addison-Wesley Signature Series). Addison-Wesley Professional, 2002. 560 p.

16. Cattell R.G., Barry D.K. The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers, 2000. 288 p.

17. Jordan D. C++ Object Databases: Programming with the ODMG standard. Addison-Wesley, 1998. 460 p.

18. Mathematical Markup Language (MathML) Version 2.0. Second Edition. [Электронный ресурс]: http://www.w3.org/TR/MathML2/

chapter4.html#id.4.4.3 (дата обращения: 10.01.2015).

19. Grand M. Patterns in Java. Volume 1. A catalog of reusable design patterns illustrated with UML. John Wiley & Sons, 1998. 480 p.

20. XSQL – Combining XML and SQL. [Электронный ресурс]: http://xsql.sourceforge.net/manual.php (дата обращения: 10.01.2015).

21. Collaborative Application Markup Language (CAML) structure specification. [Электронный ресурс]: http://download.microsoft.com/

download/8/5/8/858F2155-D48D-4C68-9205-29460FD7698F/%5BMS-WSSCAML%5D.PDF (дата обращения: 10.01.2015).

22. Fox S., Johnson C., Follette D. Beginning SharePoint 2013 Development. Wrox, 2013. 456 p.

23. KDDML: A middleware language and system for knowledge discovery in databases. [Электронный ресурс]: http://kdd.di.unipi.it/kddml/

papers/kddml.pdf (дата обращения: 10.01.2015).

24. KDDML language: Reference guide. [Электронный ресурс]: http://kdd.di.unipi.it/kddml/downloads/documentazione/Specifiche/

kddml_specification_2_0_16.pdf (дата обращения: 10.01.2015).

25. Xu Y., Shi M. SQL Markup language for enterprise integration. Proceedings of the 2004 IEEE International Conference on Services

Computing (SCC 2004), 15-18 September 2004, Shanghai, China. 2004. P. 413–416.

26. ZsqlML (Zenark’s XML for SQL). [Электронный ресурс]: http://sourceforge.net/projects/zsqlml/ (дата обращения: 10.01.2015).

27. Butek R. Web services tip: Use polymorphism as an alternative to xsd:choice. [Электронный ресурс]: http://www.ibm.com/developerworks/

webservices/library/ws-tip-xsdchoice.html (дата обращения: 10.01.2015).

ПРОГРАММНАЯ ИНЖЕНЕРИЯ

