XOQL: OBJECT QUERY MARKUP LANGUAGE

Pavel P. OLEYNIK

System Architect Software, Aston Company; Associate Professor, Shakhty Institute (branch),
Platov South Russian State Polytechnic University (NPI)

Address: 1, Lenin square, Shakhty, Rostov Region, 346500, Russian Federation

E-mail: xsl@list.ru

Modern corporate information systems (CIS) are designed by employing object-oriented paradigm and concepts.
This approach is often applied both to implement client applications and to build a server component (target DBMS).
The application of object-oriented design pattern in sofiware development enables to save business objects from RAM to

persistent memory. This paper focuses on XOQL (XML Object Query Language) - an object query language that uses
XML to describe syntax. This article presents a deep and comprehensive review of existing publications. Abundance of
examples enables to demonstrate various currently available languages.

This paper suggests a feasible option to present basic syntactic constructions of object query language in the form of
XML-documents. Prior to syntax design the optimality criteria have been formulated (these are described in detail in
this paper). Query language syntax extensions are outlined in addition to basic ones, as well as extension approaches
by involving proprietary constructions. An optimal language structure is presented accompanied by descriptions of tags,
attributes and admissible values. At the end of this article there are plenty of examples of various common queries.

Key words: object query language, corporate information systems, query language, markup language, XML, databases.
Citation: Oleynik P.P. (2015) XOQL: Object Query Markup Language. Business Informatics, no. 2 (32), pp. 30—38.

1. Introduction

xtensible Markup Language (XML) is used to
Erepresent semi-structured data, i.e. informa-

tion, which structure is unknown or is antici-
pated to face profound future changes [1]. Due to its
flexibility, visibility and existence of a large number of
supporting technologies this language is utilized in dif-
ferent parts of a corporate information system (in serv-
er database, client application, server applications).
One of tasks requiring retention of information, which
structure is unknown in advance, is a task to present
syntax of a data query language (QL) (for example,
SQL, OQL, LINQ, etc.). Implementation of these QL
as XML-documents will enable to unify the data ma-
nipulation process, which in this case does not depend
on any specified data source (file system, RDBMS,
OODBMS, etc.).

The suggested syntax may be used at the transport level
to transmit queries between levels and tiers in a complex
information system. To generate queries and to perform

30

syntax parsing one may use third-party libraries, which
are available on target client or server platform.

Classic implementation of a syntax representation of
a query language in a software application is in the form
of text strings containing key words [2], pertaining to re-
spective grammar. In doing so, full implementation of
such QL entails (according to the author) the following
disadvantages:

1. The necessity to carry out a comprehensive seman-
tic analysis for syntax by itself. Interdemand to develop
strings handling classes, which will check a particular
query for grammar and syntax to build a tree for added
tokens of a query language.

2. The necessity to build a class hierarchy to generate
a query construction. Modern applications are designed
on object-oriented programming languages (OOPL)
and manipulate instances of classes, calling their meth-
ods and assigning attribute values. It is best to use the
generation of a query by creating a class instance (ob-
ject) of syntax constructions.

Using XML to present a query language syntax would
allow to avoid the above listed disadvantages and inde-
pendent language from specific DBMS used to store in-
formation.

The plurality of XML analyzers and parsers for client
and server applications enables to simplify the process of
syntactic and semantic analysis. These parsers have an
object model to generate programmatically the structure
of XML documents, which constitute an object query in
this case.

2. Related papers
and technologies

All existing literature can be divided into three major
categories:
1. Papers, which describe implementation of query lan-
guages in object-relational mapping (ORM) tools;
2. Articles, which deal with domain-specific query lan-
guage, research in certain data domains;
3. Publications, which specify ways of using XML-docu-
ments in certain syntax constructions of query languages.

Each of these categories is described in detail in the
following subsections.

2.1. Query languages,
implemented in ORM-tools

Currently object-relational mapping (ORM) tools
have been increasingly used in information system de-
sign to implement an object system in relational DBMS.
Every ORM-tool implements its own object query lan-
guage dialect. For example, Hibernate software product
supports HQL and incorporates a rich class object mod-
el designed to generate a query [14].

HQL-query is recorded in the <query> tag in the
CDATA section, and its structure is similar to SQL. It
does not use the possibility of organizing a hierarchy of
nodes for a clearer presentation of a structure and syntax
of an object query, i.e. HQL developers have resorted to
classical implementation, as described above, involving
a syntax analysis and verification of certain strings of de-
fined grammar; a built-in hierarchy of classes has been
developed as well to support a query generation.

Enterprise JavaBeans (EJB), a technology that can be
regarded as ORM-tool implemented on Java language,
supports EJB-QL query language that enables various
manipulations with objects (to select, to insert, to up-
date, to delete, etc.) [12]. It is possible to write EJB-QL-
query in a configuration file (in the descriptor deploy-
ment) that is a XML-document.

A query that uses only one <ejb-ql> tag consists of
strings of SQL-like QL. Therefore, it suffers from the
above listed drawbacks.

2.2. Domain-specific
query languages

Query language design issues are discussed in theo-
retical papers dealing with object-relational mapping
patterns. Article [13] describes QL implementation
that enables to select class instances from a RDBMD-
based object system, and a query can be built based
on a XML-schema published in the above mentioned
paper.

This implementation makes it possible to extract main
temporal data, and it is used in a specific data domain
(medical IS). Therefore, the language is not orthogonal
to the data domain and cannot be used as the main in-
formation system in a different profile.

It is possible to include a specific language — CAML
(Collaborative Application Markup Language) into this
category of papers; it is presented in [21-22] and em-
ploys Windows SharePoint Services that supports a sin-
gle cross-enterprise electronic workflow.

To extract data the <Query> tag is used; the <Where>
inner node enables to create complex expressions with
a combination of comparison and logical operations. In
each comparison operation the <FieldRef> tag is uti-
lized to indicate links in a field, and the <Value> node
presents a comparable value. Note that the <Value>
node can contain either a constant or a field name. In
this complex arithmetic expression a similar text string
should be specified. More correctly, this needs to be
done with nested tags, thus providing an opportunity to
describe complex expressions.

Let’s consider another domain-specific markup lan-
guage. KDDML (KDD Markup Language) is used as
an intermediate language to extract information through
knowledge discovery CISs. [23-24].

To formulate a query the <KDD_QUERY> root tag
is used; it enables to identify a query unambiguously by
using a name specified in the «<name» attribute. Then,
this query can be executed using a name in the <CALL _
QUERY?> tag. To determine a structure of decision trees
generated for data analysis and extraction the <TREE _
MINER> XML-element is utilized. The xml_dest at-
tribute specifies a location, where output data will be
saved. Therefore, this language can only be used in
knowledge-based decision support systems. Substantive
findings of the literature review suggest that a domain-

31

specific query language cannot be used as a uniform data
query language.

2.3. Methods for presentation
of certain syntactic constructions
of query languages as XML

Papers within this category most closely correspond
to tasks addressed in this article, because these offer a
unified approach to certain syntactic constructions of
QL. This problem has been solved in XSQL [20], where
a markup language has been designed to describe SQL-
query structures.

The root element is the <xsql> tag, containing one or
more queries that are described in the <query> tag. First
of all, we are interested in a set of tags, which are used
to extract data, therefore, let’s consider the <select>
child nodes tag. The <table_column> node indicates a
field name (<column>) and a corresponding table name
(<table>). XSQL doesn’t offer any simple way to specify
columns to be extracted and to set alias for a field. To
specify conditions for data filtering the <conditional>
tag is used that contains predicates in the form of string
expressions.

To create complex queries and queries with parame-
ters the <statement> tag that contains the SQL-query is
utilized. This approach to query description suffers from
the above mentioned disadvantages relating to ORM-
tools (Sec. 2.1).

Unfortunately, at present the XSQL project is no
longer being developed and now only dtd-description
of some constructions is available, that is clearly not
enough to describe queries for a real-world application.

Another approach developed for submission to logical
conditions for SQL language filter (for submission of de-
sign directives) is described in [25] that deals with SIML
(Software Integration Markup Language).

SIML uses the <sql> tag that specifies a list of fields
and tables, which information must be selected to be
written as a SQL-string. This approach has the above
listed disadvantages.

Use the <filters> child XML-node that contains con-
ditions for data filtering. Each individual comparison
condition is created by the <query> tag: a field name is
specified in the <field> tag, and a value is indicated in
the <value> tag.

Basically, [25] describes equality comparison opera-
tions only. Construction of predicates, containing com-
plex logical expressions with multiple operations, is not
covered in the above mentioned paper. Also, an idea of

32

two opposite approaches to description of selected fields
(as a string SQL-query) and filtering conditions (as a set
of nested tags) constitutes a serious disadvantage, that
manifests itself in the impossibility of writing a query
for data extraction from a number of tables and imple-
mentation of join — operations. These deficiencies have
resulted from the fact that SIML had been designed as
a language aimed to integrate data stored in different
sources, and not as a QL.

A study, where SQL syntax presentation principles
have been elaborated most comprehensively, refers to
ZsqIML project (Zenark’s XML for SQL) [26].

Though ZsqIML offers a number of advantages (like
all other languages, outlined earlier in this section, in-
volving nested SQL constructs), it has a huge drawback:
it is intended for submissions to SQL syntax that lacks
many object extensions and is used often to develop ob-
ject-oriented applications.

Summarizing the review of all three categories of pa-
pers, one could argue that each of the considered ap-
proaches (and tools) has a number of disadvantages. The
following sections of this paper describe an implement-
ed query language syntax that lacks the above mentioned
weaknesses.

3. Implementation
of XOQL query language

Modern corporate information systems (CIS) are de-
signed by employing the object-oriented paradigm. To
develop an objective data domain model software appli-
cation that enables to save business object to persistent
memory the following approaches are used often:

1. The use of an object-oriented DBMS for data
storage. The functional capabilities of object-oriented
DBMS:s are specified in ODMG 3.0 Standard [16-17].

2. Implementation of application’s business logic in
object-relational DBMS. Object extensions of relational
DBMSs are regulated by SQL:2003 Standard [10].

3. Implementation of an object system in relational
DBMS environment (object relational mapping, ORM)
[13, 15].

Every tool that implements one of these approaches
provides the developer with a specified query language.
In author’s opinion, the most developed one is the ob-
ject query language (OQL, Object Query Language).
Its latest specification is presented in «The Object Data
Standard: ODMG 3.0» [16]. At the same time, each
manufacturer of an object-oriented DBMS (OOD-
BMS) supports a subset of language constructions (their
own dialect) [17].

3.1. Optimality criteria to be implemented
in a query language

The main advantage of XML is the availability of a
large number of interrelated technologies that define and
control the syntax (semantic) structure of an application
(language), which creation doesn’t necessitate any par-
tial parsing, as this case implies a performed parser [3].
Modern OO-languages include a class library and XML
parser [3-6]. In addition, the latest versions of popular
DBMS, such as Oracle, MS SQL Server and DB2, sup-
port embedded data XML type that is currently included
in SQL 2003 standard [7-10].

To define valid structures of QL to be followed by a
syntax analysis (in our case — parsing) various technolo-
gies can be used, for example, by creating DTD-defi-
nitions or by involving XSD-(XDR-) schemes. If this
is not enough, a syntactic (and semantic) analysis can
be performed by using queries in XQuery language that
enables to return individual elements (nodes) of a XML-
document [11].

To build a semantic structure in XOQL optimality
criteria need to be formulated, and these should corre-
spond to QL implementation (OCQL):

1. Independence of a data domain pertaining to a de-
veloped software application. This will enable to unify
QL and to apply it in any information system. There-
fore, it is necessary to identify the structure of common
query language XML-nodes with such names as <Se-
lect>, <From>, <Where>, etc, as its name indicates
that selected tags are not relevant to data domain, but
describes various elements of QL.

2. A clear structure of a query, implemented with a
set of nested XML-nodes. Nested XML-nodes are of-
ten used to ensure the most accurate display, in particu-
larly, in the hierarchy of QL commands. For example,
the <Where> element should be inside the <Select> el-
ement, as it indicates a data filtering condition and de-
termines the Select type of a request (data extraction).
Correctness of embedded XML-nodes can be checked
during query parsing by employing dependent technolo-
gies, as described above.

3. The possibility to extend query language syntax by
introducing new constructs using nodes and attributes.
Because a query structure does not depend on a data
source (OCQLA4), the addition of any new tags (and at-
tributes) does not affect applications that use older ver-
sions of the syntax, i.e. expansion will occur in accord-
ance with the backward compatibility principles. Since a
query is executed on a data source (e.g., RDBMS), pro-
cedures need to be developed to transform a XML-spe-

cific query into QL that is supported by a source. When
adding a new element representing specific query lan-
guage syntax a target DBMS requires adjustment proce-
dures for transformation.

4. Availability of basic syntactic constructions, which
are presented in Object Query Language (OQL). Key
features of the object query language include: 1) a path
expression to describe complex relationships between
classes, and 2) possibility to extract as a part of a projec-
tion not only an atomic value from an attribute class, but
whole objects (class instance). Its implementation (and
a backlog) will provide a developer with a functional IS
offering ample opportunities to select, update and de-
lete data, similar to modern QL implemented in many
popular OODBMS, ORM-tools and in distributed ob-
ject applications.

5. Independence from any data source, data mod-
el and application architecture. Despite the fact that a
query language should support syntactic constructions
of an object query language (OQL), the same query can
be used to manipulate (to select, to update, to delete)
information physically stored in different data sources
(OODBMS, ORM-tools, ORDBMS, etc.). For each
data source the transformation procedure developed in
the dialect supports QL. Given the magnitude of today’s
ERP, and the fact that client applications can simulta-
neously work with multiple DBMS, implementation of
the above listed criteria will enable to reduce the cost of
developed applications operating in heterogeneous en-
vironments. The language syntax does not depend on
architecture of applications, and transformation in QL
supported data source can be performed at any tier (lay-
er) of a software application.

3.2. XOQL language syntax
constructions

In order to determine allowable syntax semantics QL
describes XML-schema (Fig. I). The<XOQL> tag is
rooted in any XOQL-query; it has an attribute version,
designed to describe a version of a query language. The
value of this attribute is analyzing of a program that car-
ries out transformation of XOQL-query into QL sup-
ported by a target DBMS. This technique offers organ-
ized support for backward compatibility, which allows
applications to deal with different versions of the lan-
guage. The <Select> child element indicates that a que-
ry selects information from the repository. Since other
types of queries (inserting, deletion and modification)
are not considered in this paper, the relevant syntactic
structure (presented by XML-tags) is absent in Fig. 1.

33

SOFTWARE ENGINEERING

| selectitems

|
[RL

L:Wherea-l{AnyLogicaIOrComperEOperaﬁun = =

(L i e T e

instanceAlias

AnyLogicalOperation [

AnyCompareOperation |-} ;

 keterenceJon 1 |

| Attribute :":

! é--{"é;i{éu;;' i

THot |

L}

Fig. 1. XML-schema that describes basic syntactic constructions of XOQL

Inside the <Select> element the <SelectOptions>
optional tag may be used to indicate various options af-
fecting the data selection. For example, using the <To-
pRowCount> child node one can restrict the output set
of'the first N objects, where N is a positive integer. Com-
position and structure of available options depend on a
query language supported by a target database, used as
an information repository for application development.

To describe elements of a projection of a returned data
set the <Selectltems> tag is used. Each element is de-
fined in the <Selectltem> XML-node and may contain
an alias (specified as the Alias attribute value) under
which it will be returned to a client application, i.e. the
Alias attribute is utilized as an equivalent to directives
«as» in data selection (using the «select» operator) in
SQL.

To extract objects as items of a projection the <In-
stanceAlias> tag is applied, it contains a collection of de-

clared alias accessible through the <FromlItem> node. To
select data the <Attribute> tag is used. If an attribute is
represented by an atomic literal data type (string, integer,
the number of fixed-point, etc.) and is uniquely deter-
mined by its affiliation to any type of element collections,
it is sufficient to indicate only its name (as the value of a
XML-element). If the name of an attribute disallows to
unambiguously determine an element type in a collection,
that happens, when there are several attributes with iden-
tical names in one scope (of a variable), the <InstanceAli-
as> tag is employed to specify a desired alias collection. In
this case the «attribute» name of a class is defined as the
value of the <AttributeName> XML-element.

To extract an attribute value to describe an aggregated
class of a written path expression the alternative nested
tags (<Attribute> and <ReferenceJoin>) are used.

If a value to be selected must be assigned to any specif-
ic class (type) (in order to select an instance of a derived

34

BUSINESS INFORMATICS Ne2(32)-2015

class by referring to a basic class), its name need to be
inserted as the value of the <SelfClass> node.

The <From> tag allows to specify various collections
(using <Fromltem> nested nodes) in the Cartesian
product that constitutes a source for data extraction. A
collection can serve as an extent containing objects of a
specified class and class description by using a path ex-
pression from a track before an assigned collection. In
the first case, the <Class> tag, containing the name of a
classisused to return objects, and in the second case, the
<InstanceAlias> XML-node, containing the name of a
alias assigned earlier for a particular collection, or the
<Attribute> item, extracting an attribute type (class), is
used. The «Alias» attribute is utilized to specify alias col-
lections for subsequent references to value setting in the
<InstanceAlias> tag.

gelect c.lame 3= Companylames,
o Phone
,c.Legsliddress
Erom Company c, c.Llegaliddress =
where z2.City="WHoscow"

To describe a logical predicate that imposes conditions
for data extraction filtration the <Where> tag is used.
The figure shows that a logical operation (and, or, not,
xor), and comparison operations (> =, <, etc.) can be
specified in this tag.

In view of what is stated in the foregoing it appears
that XOQL does meet all optimality criteria formulated
for the query language in sect. 3.1.

3.3. Test example:
XOQL-query

Let’s consider some XOQL-queries, which clearly
demonstrate the underlying principles of object queries
representation through XML. It is assumed that data is
extracted from a test object model.

<?xml wersion="1.0" encoding="UTF-8"7>
<HOOL xmlnsxsi="http:, fwwe.wd _org/ 2001,/ ML Schema—
instance" xsi:nolamespsceSchemalocstion="H0JL xsd">
<Select>
<SelectItems>

<SelectTtem Aliss="Companyllame">

=httributer

<Instancelliss>cd/ Instanceldl ias>
<httributelame>Name< /At tributellames>

< fAttribute>

</ BelectItems>
<SelectItem>

<httribute>

<Instancehlissy»cd/ Instancedd iss>
<httributelamerPFhone</Attributellame >

</Attribute>

</ 8electTtem>
<Select Item>

<Ettribute>

<Instancelliss>cd/ Instancel]l ias>
<ittributelamer>Legal 2ddress< fAttributellame>

=<fAttributes

</ 8electItem>
</ SelectItems>
<From>
<FromItem Aliss="c"*

<Class>Company< /Class>

</ Fromltems
<FromItem Aliss="a"»

<httribute>

<«Instancelliss>cd/ Instanceld]l ias>
<ittributeNamer>Legal 2ddress< fAttr ibutellame>

<fAttribute>

</ Froml tem>
</ From>
<fheres

<Egual>

<httribute>

<Instancehliasr»a</ Instancedl izs>
<ittributelames»City< /Attributelames

</Attributer
<Con=tVa lue*oscows/ ConstValue >

=/ Egqual®
</ Where>
</B8elect>

</ H00L>

Fig. 2. Object query that has extracted information about companies registered in Moscow: QQL — at the left, XOQL — at the right

35

Let’s consider a complex example (Fig. 2) of an XO-
QL-query involving extraction of name, contact phone
number and registered office address of a Moscow
company.

The «from» operator (the <FromlItem> tag) indicates
that data selection has been performed from two collec-
tions (extents), containing instances of the Company
and Address classes, respectively. Aliases are assigned to
extents («c» and «a», respectively), for which the «Alias»
attribute has been used. Then the new name is used in
the <InstanceAlias> tag with the declaration of the pro-
jection item of the resulting data set (the <Select> tag),
and with reference to the previously announced collec-
tion of the <Fromltem> XML-node. Fig. 2 (at the right)
demonstrates the «CompanyName» indication alias
a for projection item under which it will be presented
in the resulting dataset that is realized by assigning the
«Alias» value attribute (the <Selectltem> tag).

A predicate that imposes restrictions on the result-
ing projection (to choose only organizations registered
in Moscow) is specified by using the <Where> tag that
contains a combination of logical, arithmetic and com-
parison operations. For comparison purposes, the «City»
value attribute of the «CompanyAddress» class on equal-
ity constantly applies the <Equal> tag, where there are

two nested nodes (<Attribute>, <ConstValue>) used to
submit the name attribute and the «Moscow» constant,
respectively.

These examples of XOQL-queries demonstrate the
wide possibilities of developed QL and the use of syntac-
tic structures, presented in the form of XML-tags and
attributes.

Note that the resulting XOQL-query is more cumber-
some than the original one and contains more than 40
lines of XML markup. However, the use of third-party
libraries and parsers eases generation of such queries.

4. Conclusion and future research

Further research should concentrate on expansion of
the proposed additional syntax constructions used for
data selection (order by, group by, having, etc.) and de-
scription of directives to add new data (the insert opera-
tor), edit (the update operator) and remove (the delete
operator) to existing data. In addition, syntactic con-
structions are needed to describe nested subqueries.
Also, it is imperative to develop and to implement an
algorithm to transform XOQL-queries into a certain
dialect of a query language (e.g., SQL), supported by a
specific DBMS. m

References

VXA R WD =

of DB2for z/0S, 6th Edition. IBM Press.

Graves M. (2001) Designing XML databases. Prentice Hall PTR.

Aho A., Lam M., Sethi R., Ullman J. (2006) Compilers: Principles, techniques and tools. Addison Wesley.
Holzner S. (2003) Real World XML (2nd Edition). Peachpit Press.

Albahari J., Albahari B. (2012) C# 5.0 in a Nutshell, 5th Edition. The Definitive Reference. O’Reilly Media.
Perrone P.J., Venkata S.R., Chaganti K.R. (2000) Building Java enterprise systems with J2EE. Sams Publishing.
Wood K. (2003) Delphi developer’s guide to XML, 2nd Edition. Wordware Publishing.

Wang J. (2011) Oracle Database 11g Building Oracle XML DB Applications. Oracle Press.

Mistry R., Misner S. (2014) Introducing Microsoft SOL Server 2014. Microsoft Press.

Mullins C. (2012) DB2 Developer’s guide — A solutions-oriented approach to learning the foundation and capabilities

10.SQL: 2003 specification. Available at: http://www.wiscorp.com/sql_2003_standard.zip (accessed 10 January 2015).
11.XQuery 3.0 use cases. W3C Working Group Note 08 April 2014. Available at: http://www.w3.org/TR/xquery-30-

use-cases/ (accessed 10 January 2015).

12.Rubinger A.L., Burke B. (2010) Enterprise JavaBeans 3.1, 6th Edition. O’Reilly Media.

13.Nadkarni P.M., Brandt C.A., Morse R., Matthews K., Sun K., Deshpande A.M., Gadagkar R., Cohen D.B.,
Miller P.L. (2003) Temporal query of attribute-value patient data: utilizing the constraints of clinical studies.
International Journal of Medical Informatics, no. 70, pp. 59—77.

14.Leonard A. (2013) Pro Hibernate and MongoDB. Apress.

15.Fowler M. (2002) Patterns of enterprise application architecture (Addison-Wesley Signature Series). Addison-

Wesley Professional.

16.Cattell R.G., Barry D.K. (2000) The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers.

17.Jordan D. (1998) C++ Object Databases: Programming with the ODMG standard. Addison-Wesley.

18. Mathematical Markup Language (MathML) Version 2.0. Second Edition. Available at: http://www.w3.org/TR/
MathML2/chapter4.html#id.4.4.3 (accessed 10 January 2015).

36

SOFTWARE ENGINEERING

19.Grand M. (1998) Patterns in Java. Volume 1. A catalog of reusable design patterns illustrated with UML. John Wiley
& Sons.

20.XSQL — Combining XML and SQL. Available at: http://xsql.sourceforge.net/manual.php (accessed 10 January
2015).

21.Collaborative Application Markup Language (CAML) structure specification. Available at: http://download.
microsoft.com/download/8/5/8/858 F2155-D48D-4C68-9205-29460FD7698F/%5BMS-WSSCAML%5D.
PDF (accessed 10 January 2015).

22.Fox S., Johnson C., Follette D. (2013) Beginning SharePoint 2013 Development. Wrox.

23.KDDML: A middleware language and system for knowledge discovery in databases. Available at: http://kdd.di.unipi.
it/kddml/papers/kddml.pdf (accessed 10 January 2015).

24. KDDML language: Reference guide. Available at: http://kdd.di.unipi.it/kddml/downloads/documentazione/
Specifiche/kddml_specification_ 2 0 16.pdf (accessed 10 January 2015).

25.XuY., Shi M. (2004) SQL Markup language for enterprise integration. Proceedings of the 2004 IEEE International
Conference on Services Computing (SCC 2004), 15-18 September 2004, Shanghai, China, pp. 413—416.

26.ZsqIML (Zenark’s XML for SQL). Available at: http://sourceforge.net/projects/zsqlml/ (accessed 10 January
2015).

27.Butek R. (2005) Web services tip: Use polymorphism as an alternative to xsd:choice. Available at: http://www.ibm.
com/developerworks/webservices/library/ws-tip-xsdchoice.html (accessed 10 January 2015).

X0QL: OBBEKTHbIA A3bIK 3ANPOCOB

ILI1. OJIEUHHK

KaHoudam mexHu4ecKux Hayk, CUCIEMHbII apXumeKmop nPo2PpammHo20 obecneuenus,
OAO «Acmon»; doyenm, Illaxmunckuit uncmumym (¢uauan), FOxcuo-Poccuiickuii
eocydapcmeenHblii noaumexruveckuii ynueepcumem (HIIH) um. M. U. Ilnamosa

Aodpec: 346500, Pocmosckas obnracme, . Illaxmut, na. Jlenuna, 0. 1
E-mail: xsl@list.ru

Cospemennvie KopnopamugHsie ungopmayuonnsie cucmemst (KHUC) pazpabamoeigaromes ¢ npumeHeHuem
00BeKMHO-0PUEHMUPOBAHHOI NApaduemvl U NPOCKMUPYIOMCA 6 NOHAMUAX 006eKMHO-0PUEHMUPOBAHHOZ0
duzaiina. Imom noodxo0 4acmo NPUMEHAOM KAK NpU peasu3auuu KAUeHMCK020 NPUAONCeHUs, MaK u npu
CO30aHUU CepeepHOe0 YPOBHs, pedru3oeanHozo 6 cpede yeneeoii CYBJI. I[lpumenenue npunyuna npedmemHo-
OPUEHMUPOBAHHO20 NPOEKMUPOBAHUS NPU PA3PAOOMKeE NPOSPAMMHO20 00eCneUeHUs NO360A5em 0PeaHU308aMb
npouecc coxpauerusi 006eKmos U3 OnepamueHol 8 004208peMenHyi0 namsamo. JlanHas cmamos NOCEAUEHA
onucanuto sizvika XOQL (XML Object Query Language), komopbiii npedcmaeasem co6oii 00seKmHblil A3blK
3anpocos u 045 ONUCAHUs cuhmakcuca ucnoavzyem XML. B cmamuve nposeden enybokuil u 6cecmopoHHULL aHANU3
umerouuxcs. pabom. Obuaue 604bUIO20 KOAUHECBA NPUMEPOE NO360/5em NPOOeMOHCIPUPOBAMb PA3AUYHBIE
UMEIOWUECs Ha Ce200HAUWHULL OeHb SA3bIKU.

B pabome npedcmasnren 00uH U3 803MOJNCHBIX 6APUAHMOE NPeOCMaBAeHUs 0a308biX CUHMAKCUHECKUX
KOHCMPYKYUll 00seKmHoe0 A3blKa 3anpocog 6 eude XML-dokymernmos. Ileped npoekmuposanuem cunmakcuca
OblAU 8bl0eneHbl Kpumepuu onmumMalbHOCMU, Komopble noopobHo onucatwl 6 pabome. Kpome 6a308bix, ONUCAHYL
CUHmMaKcU4ecKue pacuupenus s3vlka 3anpocoé U chocoObl pacuiupeHruss CoOCMEEeHHbIMU KOHCMPYKUUIMU.
Ilpedcmasnena cmpykmypa peanu308aHH020 ONMUMAABLHOO SI3bIKA C ORUCAHUEM mMe208, ampuoymos u
donycmumbix 3HA4eHULL.

B KOHUe cmambu npe@cmaeﬂeﬂo MHONCECMB0 NPpUMEPO8 pA3AUHHbIX 81006 3anpocos, 4acmo eCmpe1arouuxca
Ha npaKkmuke.

BUSINESS INFORMATIGS Ne2(32)-2015 37

[IPOl PAMMHAS HXXEHEPUA

Kirouesbie ¢10Ba: 00HEKTHBIH SI3bIK 3aIIPOCOB, KOPIOPATUBHbIE NH(POPMALMOHHEIE CUCTEMBI, SI3BIK 3aIIPOCOB,
SA3bIK pa3MeTKu, XML, 6a3bl JaHHBIX.

Iuruposanue: Oleynik P.P. XOQL: Object Query Markup Language // Business Informatics. 2015. No. 2 (32). P. 30—38.

RS AR i o

12.
13.

14.
15.
16.
17.
18.

19.
20.
21.

22.
23.

24.
25.

26.
27.

38

Jlureparypa
Graves M. Designing XML databases. Prentice Hall PTR, 2001. 688 p.
Aho A., Lam M., Sethi R., Ullman J. Compilers: Principles, techniques and tools. Addison Wesley, 2006. 1000 p.
Holzner S. Real World XML (2nd Edition). Peachpit Press, 2003. 1200 p.
Albahari J., Albahari B. C# 5.0 in a Nutshell, 5th Edition. The Definitive Reference. O’Reilly Media, 2012. 1064 p.
Perrone PJ., Venkata S.R., Chaganti K.R. Building Java enterprise systems with J2EE. Sams Publishing, 2000. 1536 p.
Wood K. Delphi developer’s guide to XML, 2nd Edition. Wordware Publishing, 2003. 545 p.
Wang J. Oracle Database 11g Building Oracle XML DB Applications. Oracle Press, 2011. 416 p.
Mistry R., Misner S. Introducing Microsoft SQL Server 2014. Microsoft Press, 2014.
Mullins C. DB2 Developer’s guide — A solutions-oriented approach to learning the foundation and capabilities of DB2 for z/OS, 6th
Edition. IBM Press, 2012. 728 p.

. SQL: 2003 specification. [DnekrpoHHbIit pecypc]: http://www.wiscorp.com/sql_2003_standard.zip (mata oopamenus: 10.01.2015).
. XQuery 3.0 use cases. W3C Working Group Note 08 April 2014. [DnekrpoHHbIit pecypc]: http://www.w3.org/TR/xquery-30-use-cases/

(mara oopauieHust: 10.012015).

Rubinger A.L., Burke B. Enterprise JavaBeans 3.1, 6th Edition. O’Reilly Media, 2010. 766 p.

Nadkarni P.M., Brandt C.A., Morse R., Matthews K., Sun K., Deshpande A.M., Gadagkar R., Cohen D.B., Miller P.L. Temporal query
of attribute-value patient data: utilizing the constraints of clinical studies // International Journal of Medical Informatics. 2003. No. 70.
P. 59-77.

Leonard A. Pro Hibernate and MongoDB. Apress, 2013. 384 p.

Fowler M. Patterns of enterprise application architecture (Addison-Wesley Signature Series). Addison-Wesley Professional, 2002. 560 p.
Cattell R.G., Barry D.K. The Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers, 2000. 288 p.

Jordan D. C++ Object Databases: Programming with the ODMG standard. Addison-Wesley, 1998. 460 p.

Mathematical Markup Language (MathML) Version 2.0. Second Edition. [DnextponHsrii pecypc]: http://www.w3.org/TR/MathML2/
chapter4.html#id.4.4.3 (nara o6pawmenusi: 10.01.2015).

Grand M. Patterns in Java. Volume 1. A catalog of reusable design patterns illustrated with UML. John Wiley & Sons, 1998. 480 p.

XSQL — Combining XML and SQL. [9nekTpoHHbIii pecypc]: http://xsql.sourceforge.net/manual.php (nata o6paiuenusi: 10.01.2015).
Collaborative Application Markup Language (CAML) structure specification. [DnektpoHHslii pecypc]: http://download.microsoft.com/
download/8/5/8/858F2155-D48D-4C68-9205-29460FD7698F/%5BMS-WSSCAML%5D.PDF (nara o6patenust: 10.01.2015).

Fox S., Johnson C., Follette D. Beginning SharePoint 2013 Development. Wrox, 2013. 456 p.

KDDML: A middleware language and system for knowledge discovery in databases. [DnekTpoHHbIit pecypc]: http://kdd.di.unipi.it/kddml/
papers/kddml.pdf (nata o6paienus: 10.01.2015).

KDDML language: Reference guide. [DaexrpoHHblii pecypc]: http://kdd.di.unipi.it/kddml/downloads/documentazione/Specifiche/
kddml_specification_2_0_16.pdf (mata o6pamenus: 10.01.2015).

Xu Y., Shi M. SQL Markup language for enterprise integration. Proceedings of the 2004 IEEE International Conference on Services
Computing (SCC 2004), 15-18 September 2004, Shanghai, China. 2004. P. 413—416.

ZsqIML (Zenark’s XML for SQL). [DnekrpoHHbIit pecype]: http://sourceforge.net/projects/zsqlml/ (nata o6pamenus: 10.01.2015).
Butek R. Web services tip: Use polymorphism as an alternative to xsd:choice. [DnekTpoHHBbII pecypc]: http://www.ibm.com/developerworks/
webservices/library/ws-tip-xsdchoice.html (nata o6pamenus: 10.01.2015).

bUSHEG-HHDOPMATHUKA Ne2(32)-2015 r.

