RESOURCE CHARACGTERISTIGS

OF WAYS TO ORGANIZE A DECISION TREE
IN THE BRANCH-AND-BOUND METHOD
FOR THE TRAVELING SALESMEN PROBLEM

Mikhail V. ULYANOV

Leading Researcher, V.A. Trapeznikov Institute of Control Sciences,
Russian Academy of Sciences;

Professor, Software Management Department,

National Research University Higher School of Economics

Address: 65, Profsouznaya Street, Moscow, 117997, Russian Federation
FE-mail: muljanov@mail.ru

Mikhail I. FOMICHEV
Student, Software Engineering Program,
National Research University Higher School of Economics

Address: 20, Myasnitskaya Street, Moscow, 101000, Russian Federation
E-mail: mikhail fomichev94@gmail.com

The resource efficiency of different implementations of the branch-and-bound method for the classical traveling
salesman problem depends, inter alia, on ways to organize a search decision tree generated by this method. The
classic «time-memory» dilemma is realized herein either by an option of storing reduced matrices at the points of
the decision tree, which leads to reduction in the complexity with additional capacity cost, or matrix recalculation
for the current node, which leads to an increase in complexity while saving memory. The subject of this paper is an
experimental study of temporal characteristics of solving the traveling salesman problem by the branch-and-bound
method to identify a real reduction of span time using additional memory in a selected structure of a decision tree.
The ultimate objective of the research is to formulate recommendations for implementing the method in practical
problems encountered in logistics and business informatics.

On the basis of experimental data, this paper shows that both considered options of the classic algorithm for
the traveling salesman problem by the branch-and-bound method generate software implementations with an
exponential dependence on the execution time of the input length. The experimental results permit us to suggest
that the applicability of an additional memory capacity of no more than 1 GB results in a significant (up to five
times) reduction of the time span. The estimate of the resulting trend makes it possible to recommend practical
application of the software implementation of the branch-and-bound algorithm with storage of matrices - with a
really available 16 GB random-access memory and with limitation of the expected average computation time of
about one minute on modern personal computers whereby problems having a dimension no more than 70 can be
solved exactly.

Key words: traveling salesman problem, branch-and-bound method, time and memory efficiency, data structure, experimental
research.

Citation: Ulyanov M.V., Fomichev M.I. (2015) Resource characteristics of ways to organize a decision tree
in the branch-and-bound method for the traveling salesmen problem. Business Informatics, no. 4 (34), pp. 38—46.
DOI: 10.17323/1998-0663.2015.4.38.46.

38

Introduction

large variety of practical settings in the area of

business informatics and logistics comes down

o the classical traveling salesman problem. The
abundance of heuristic methods for its solution does
not mean rejection of obtaining exact solutions for this
problem. Obviously, for precise methods having an ex-
ponential complexity the researchers would like to have
estimates of the dimension of problems which can be
solved within a reasonable time, as well as modified ex-
act algorithms with a better time efficiency.

For certain algorithms, an increase of time efficien-
cy can be achieved by using an additional amount of
available memory. This situation arises in algorithms
allowing us to replace re-computations for storing
previously obtained intermediate results. This ap-
proach can also be used for algorithms implement-
ing the branch-and-bound method for the traveling
salesman problem. By the example of modifications
of the classical algorithm for the exact solution of the
traveling salesman problem using the branch-and-
bound method proposed by J.D.C.Little, K.G.Murty,
D.W.Sweeney and C.Karel [1], this paper illustrates a
possible increase of the time efficiency using an addi-
tional memory to store matrices in the data structure
of the search decision tree.

1. Setting up the traveling
salesman problem

The problem description lies in the fact that the sales-
man has to visit a number of cities for product advertis-
ing and selling purposes. It is assumed that between each
pair of cities there is an internal transportation. Let us
call these visiting rules a tour in which each city is visited
only once. The fare between the cities is known, and, in
general, the return fare is different. The challenge is to
find the traveling salesman tour with minimal cost. It is
obvious that the number of tours is finite, and we can
solve the problem by straightforward enumeration. But,
unfortunately, a complete set will contain (# — 1)! tours,
for this reason an exhaustive solution algorithm for solv-
ing the real dimensions of the problem becomes totally
unacceptable.

Setting up the problem in terms of the graph theory is
built by association of cities with the graph nodes, and
the transport routes and fare with loaded arcs. We get a
complete directed asymmetric graph at n nodes without
proper loops prescribed by the cost matrix C= (c,.l.). The
problem is called symmetric if the fare between any two
cities does not depend on the direction, and asymmetri-

cal, if that is not the case. The absence of proper loops
can be denoted as c,; = o Vi =1,n. Then, the problem
is formulated as a problem of finding a covering (com-
plete) cycle at the lowest cost, which is called a tour, on a
complete directed graph specified by asymmetric (in the
general case) cost matrix C[2].

Let us also enter the problem definition in Euclidean
integral-valued space E Z"‘l [3]. It is based on the concept
of permutation on a set of integers. Let us further rep-
resent through 7 (k,/),/ 2 k a set of all permutations of
integers (it is obvious that a number of such permuta-
tions is (/—k+1)!) and consider a set of permutations
m(2,n), which contains |rr(2,n)|=(n-2+1)!=(n-1)!
of various permutations (exactly the number of vari-
ous tours is available in the traveling salesman problem
with #z cities). Since a tour is a complete cycle across the
nodes, the initial node of the tour can be chosen arbi-
trarily. Let us fix a node number 1, and assume that some
permutation x from a set 77 (2, 7) orders the tree traversal
starting from the first, and after the last point given by
this permutation, we return to the beginning of the tour.
Therefore, the components of vector x in space EzH are
simply ordered numbers from two to n, and the vector is
associated with some permutation from (2,n), and it
can be written:

xem(2,n),x,€{2,...,n},i=1n-1,x,#x,withi#j (1)

Let us note that the sum of squares of the compo-
nents of different vectors x is the same: these are differ-
ent permutations of numbers from two to #. Thus, the
end points of various vectors X are points on the positive
hemisphere in E;‘l centered at the origin and with a ra-
dius of

r:\/giz = \/w—l, xeS"(0,r).

Let us further determine the function

NXN—=R(i,j)—c(i,j),(i,i)— oo
which assigns the value of the edge to each ordered pair
of graph nodes, incident to this pair. In the constructed

formalism, the traveling salesman problem in space Ez’H
has the following statement:

f(x)= c(l,xl)+§c(x,.,x,.+l)+c(x"4,l),f(x)—>min Q)

i=1

X= (xl""axn—l)e”(z’n)

The branch-and-bound method under further consid-
eration works, if not explicitly, with this statement of the
traveling salesman problem.

39

2. Description of branch-and-bound method
for the traveling salesman problem

The general idea of the branch-and-bound method is a
separation of the entire set of feasible solutions into sub-
sets to further reduce the enumeration - a branching pro-
cedure. Every such subset shall be linked to an estimate
(lower bound in the minimum search), providing a trun-
cation of those subsets which intentionally do not contain
an optimal solution — this is a procedure for construct-
ing bounds. Therefore, the method results in investiga-
tion of a tree solution space model. A set of all salesman
tours in which the objective functional (2) is minimized,
specifying the tour cost, is such an initial subset in the
problem under investigation. The ideas presented below
from the algorithm authors [1] are a kind of classic of the
branch-and-bound method. To construct the algorithm,
two basic procedures, i.e. branching and bounding, are
proposed. Let us consider the branching process [1]. The
construction of a search decision tree starts with the root,
which will correspond to a set of all tours, i.e., a root of
the tree is set R of all (n — 1)! tours possible tours in the
problem with n towns. The branches going out from the
root are determined by selecting one edge, for example,
arc (k, [). The idea of the algorithm authors [1] is to divide
the current set of tours into two subsets: one which most
likely contains the optimal tour, and the other one which
most likely does not contain this tour. To do this, a spe-
cial algorithm for selecting arc (k, /) is proposed, which
likely is a part of the optimal tour. The set Ris divided into
two subsets {k, /} and {k N } The subset {k, I} includes all
tours from R containing arc (k, /), i.e. passing through it,
and the subset {ﬁ} includes tours that do not contain
this arc. Let us note that the idea of the algorithm authors
is very promising if the branching process is organized so
that at each step the «right» edge is selected, the entire
process will be completed after z steps. A fragment of such
tree is shown in Fig. I (the figure is taken from paper [2]).

Level 0

Level 1

Level 2

Fig. 1. Fragment of a search decision tree

The lowest cost limit of any tour of this set is asso-
ciated with each tour of this set. It is obvious that the
problem is to obtain the most accurate lower bounds.

40

The reason for that is as follows. Let us assume that a
specific complete tour T with cost s (T) has already
been obtained. If the lower bound associated with a set
of tours represented by a search tree node is higher than
s (T), then until the end of the search process this and
all subsequent points are not to be considered. In imple-
mentation this leads to truncation of the search decision
tree by shedding all leaves of the search tree having a value
higher than s (7"). A detailed presentation of other steps
of the method can be found, for example, in papers [2, 3].

3. Diagram of the branch and bound method
for the traveling salesman problem

Let us present the following diagram of the branch-and-
bound method (B&B) for the traveling salesman problem,
in which the following notations are introduced [2]. Let X
be the current top of the search tree, and (&, /) be an edge
across which the branching occurs. Let us denote the tops
immediately following X through Y'and Y. The set Yis a
subset of tours from X passing via arc (k, /), and set Y is a
subset of tours from X not passing via arc(k, /). Let us de-
note the calculated the lowest bounds for sets Y and ¥ by
w(Y) and w(?) respectively. Let us denote the cheapest tour
known to the algorithm at the given moment by z , pro-
vided that at the time of initialization is z = o [1].

A(C, n) Diagram of the branch and bound method for the
traveling salesman problem
(n - dimensions, C — cost matrix.)
1. Initializaiton.
2. Reduction of cost matrix C.
3. Setting a root of the search decision tree X=R
Reduction of the initial matrix — calculation w(X).
While (w(X) < z0)
begin
4. Selection of branching node (k, I).
5. Branching process. Creating top Y~
and calculation w(Y ™).
6. Branching process. Creating top Y
and calculation w(Y).
If (the order of cost matrix intop Y = 2)
then
begin
7. Performance of exhaustive estimation for top Y
If (w(Y) < 20)
then
begin
70 = w(Y)(store the tour)
end
end
8. Selection of the following point of the search decision tree
and setting X
9a. Calculation of matrix fragment C,
corresponding to selected top X,
based on a route from the root to the current point.
(or)
8h. Reading of matrix fragment C,
corresponding to selected top X,
from the structure of storage of the search solution tree.
end (while w(X) < z0)
Optimal solution with cost z0 is not found.
End.

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

For the purposes of this article, let us draw our atten-
tion to some stages in this enlarged scheme.

Step 1. Selection of a data structure for storing the
search decision tree is of interest here. At the same time,
it is necessary to bear in mind that a number of the search
tree points can be significant.

Step 3: Initialization of the search tree root. The main
question is whether the cost matrix will be stored togeth-
er with the top of the tree. An alternative option is to re-
calculate the cost matrix for the current top based on the
original one. This is a classical choice between perform-
ance and memory requirements. The classical algorithm
requires recalculation of the matrix costs for the newly
determined current point of the search decision tree.

Step 9. Since the node of the search tree X in step 8
has already been selected as a current one, the task of
this step is to obtain a cost matrix corresponding to top
X. If we keep the truncated cost matrices together with
the nodes of the search tree, the matrix already exists
(9b). Otherwise, we need to find a path from the root to
this node and consistently adjust the original cost matrix
(9a), i.e. re-compute it for this point.

Discussion of algorithm specifics. What results in
terms of complexity can be expected for different cost
fixed-dimension matrices? It is known and suggested
that the complexity of all more or less efficient algo-
rithms implementing the branch-and-bound method
for the traveling salesman problem in the worst case is
exponential. This assumption is based on the fact that
the traveling salesman problem is NP-hard and, there-
fore, any exact algorithm of its solution has an above-
polynomial complexity. In the best case, if the dimen-
sion of the cost matrix keeps declining, the estimate of
complexity is polynomial. This is obvious, because the
assessment of complexity of each internal step (4-9) of
the polynomial algorithm by a linear dimension »n of
the cost matrix, and, in the best case, the main loop is
executed no more than # times, because the tour con-
sists of n arcs. Therefore, the spread of expected execu-
tion time with a fixed dimension of the cost matrix »
is very high and depends on the numerical values of its
elements. This is an example of quantitative parametric
algorithm, with a strong parametric dependence; the
algorithm belongs to the class NPRH [3]. Theoretical
analysis of the expected complexity for a particular en-
try based on a preliminary study of the cost matrix is
very complicated and often goes beyond the scope of
our analytical capabilities.

Howeyver, the time efficiency will be determined spe-
cifically as a selected structure to store the search de-

cision tree, and a decision in step 9 with storage or re-
computation of the current cost matrices. The matter is
that an average number of active nodes grows exponen-
tially. The experimental data from [4] gives an experi-
mentally obtained approximation R(n)=3,6932-e""*"".
In this regard, the effectiveness of elementary operations
with the decision tree (add, delete, select) determines
the time effectiveness of the software implementation of
the algorithm as a whole [5, p. 130-131].

4. Data structures
for the search decision tree

In order to select the data structures for the search de-
cision tree, let us look at the three best-known options of
the tree organization [6, 7], i.e. a binary heap, red-black
tree and AVL tree

Table 1 shows the complexity of operations (informa-
tion is taken from [6, 7]), which are performed above the
search decision tree in the branch-and-bound method
for the traveling salesman problem. It is evident from the
table that the operating time (asymptotically) of the in-
sert and element removal operations for all three data
structures are equal. However, the minimal element
search operation for the binary heap is performed over a
constant time, but for the AVL and red-black trees over
a logarithmic time. Moreover, in the functions of com-
plexity of these operations coefficients with the term
with higher exponent of the polynomial are much higher
for red-black and, especially, AVL trees than for the bi-
nary heap, because additional operations are spent on
the tree balance. It is also worth noting that three data
structures have the same requirements for storage O(n).
Therefore, it may be assumed that to store decision tree
leaves a binary bunch will be suitable structure as com-
pared to others, although this issue will be studied addi-
tionally and is beyond the scope of this study.

Table 1.
Complexity of operations for various ways
of tree organization

Red-hlack
tree

Binary

Reference line AVL-tree

Complexity of insert O(log(n)) O(log(n)) O(log(n))
Complexity of remove O(log(n)) O(log(n)) O(log(n))
ComplextySlscath M o) | Otog(n) | Ollgte)

On the basis of the data presented by the authors, a de-
cision was taken in this study to use a binary heap as the
structure for storing the search decision tree.

BUSINESS INFORMATIGS Ne4(34)-2015

41

5. Objectives
of the experimental research

In this experimental research, the authors set the fol-
lowing objectives. The main objective is to illustrate a
possible increase of the time efficiency through the use
of additional memory for storage matrices in the search
decision tree structure. The issue concerning the effect
of matrix storage in the nodes of the search tree on the
exponent in a trend of the average calculation time or
only on a multiplicative constant in the trend function
is of additional interest. Secondary objectives were to
study a dependence of the memory capacity on the entry
length in the comparative analysis of experimental re-
sults and the data obtained in paper [4], the distribution
of the relative frequencies of the observed times, and to
obtain data on the scope of variation and sample stand-
ard deviations for characteristics under study and design
average time prediction for longer entry lengths.

6. Description of the experiment
plan and hardware

Consideration was given to an asymmetric traveling
salesman problem. The cost matrix was generated by
a pseudorandom uniform generator standard for C++
pseudo-uniform generator. In order to reduce the total
time of the experimental research, the cost matrix ele-
ments had an integer type, and a range of generation of
oriented edge weights was chosen from 1 to 25, For the
same purposes, the range of values of input lengths of
the traveling salesman problem (linear dimension of the
matrix values) from 25 to 45 with an increment of 1 was
selected.

Algorithm [1] was implemented (with no prediction of
the final tour of the greedy algorithm) with the structure

time, ms

1200

1000

/.
y =0,0114 go2ssa /
800

R?=0,9987 /
600 /
400 /
200 J

0 T T r T
25 30 35 40 45

1
number or towns

Fig. 2. Dependence of an average time of tour calculation
without additional memory on the input length

42

of storing the search decision tree in the form of a bina-
ry heap in the classical implementation with recalcula-
tion of the cost matrix (i.e., without using an additional
memory) and in a modified implementation with stor-
age of a local cost matrix (for nodes of the tree).

For each fixed input length, 10,000 pseudo-random
cost matrix generations were performed, for each of
which a classic algorithm implementation was started
(with recalculation of matrices) and modified algorithm
implementation (with matrix storage) [1]. The run-time
of the algorithm software implementation, generated
number of nodes of search decision tree was measured
for each start, and a maximum value of additional mem-
ory spent for matrix storage was also measured for modi-
fication with matrix storage.

Experiments were carried out on a stationary machine
with the following characteristics:

4 Processor: Intel i7 3770K 3800 GHz;

4 Random access memory: Kingston KHX-

1600C9D3P1 16 GB;
4 Motherboard: GIGABYTE GA-Z77X-D3H;
4 Operating system: Fedora 21 workstation.

The algorithms are implemented in language C++.
The compiler version: gcc 4.9.2 20150212 (Red Hat
4.9.2-6) (GCCQC). Let us note that in this regard the total
time of computational experiment (10,000 starts for 21
values of the input length) was about 20 hours.

7. Results and discussion

Within the main objective of the study the authors ob-
tained the results shown in Fig. 2and 3. For both options
of organization of the decision tree (matrix storage or re-
computation) the observed average time grows exponen-
tially. At the same time, we have to note that the option

time, ms
200 /‘
— 0,2271x
150 y=0,0077¢

R?=0,9997 /
100 /
50

0 T T T T
25 30 35 40 45

T
number or towns

Fig. 3. Dependence of an average time of tour calculation
on the input length with the additional memory

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

5 /

4

y=0,0114 g0
R?=0,9987

0 T T T T
25 30 35 40 45

T
number or towns

Fig. 4. Dependence of a relation of the average time of tour calculation
without additional memory to the average time of tour calculation
with the additional memory on input length

with matrix storage results in a change of not only the
multiplicative constant, but also the exponent.

From the trend of experimental results (Fig. 2 and 3)
it follows that with an increase of the input length of the
problem the observed reduction of time d(n) (time ratio)
will grow in trend d(n)=1,478-¢""". The results and
trend d(n) are provided in Fig. 4.

It is evident that the effect of matrix storage will be higher,
the deeper the search tree, as a «long» path from the root
leads to more complicated recalculations for the original
matrix. Our experimental data shows that the use of addi-
tional memory reduces the exponent from 0.2562 to 0.2271,
i.e. by 0.0291. For the problem with 45 cities this reduction
was 5.087 times (from 1.04 to 0,204 sec), all of which indi-
cates considerable option efficiency with additional mem-
ory. The resulting trend for d(n) suggests that the observed
reduction of time will also increase with the increase of the
input length. The resulting prediction is given below.

The following results are obtained for additional goals
of the research.

The results on dependence of additional memory ca-
pacity on the input length are shown in Fig. 5. For input
length 45 the additional memory requirements average
30.71 MB, providing a 5-fold reduction of time.

memory capacity
40000000

35000000
30000000 #

25000000 /
= 0,2392x
20000000 y=716,09¢

R*=0,99%
15000000 /

10000000 /

5000000

0 T T T T
25 30 35 40 45

T
number or towns

Fig. 5. Dependence of the average capacity of additional
memory on the input length

By comparative analysis of the experimental results and
data obtained in paper [4] on dependence of the aver-
age number of nodes of the search decision tree on the
input length, the results obtained by the authors (Fig. 6)
give the following trend of estimate of an average num-
ber of nodes of the decision tree: R(n) = 5,323-¢""**"" that
is qualitatively comparable with the results from [4] —
R(n)=3,6932-¢""*""". By the exponent, a disagreement
with our data is not more than 0.65%.

number or nodes
25000

20000
y = 5,323 go163ix

REZ0,9968 /
10000 /
500
0 T T T T
25 30 35 40 45

15000

T
number or towns

Fig. 6. Dependence of the average number of nodes
of the search decision tree on the input length

The discrepancy in the multiplicative constant can be
attributed to lower values in a range of studies in paper
[4] — from 10 to 30 and may be specifics of the initial
data generation. The exponential growth of a number of
generated tops of the search decision tree defines the ex-
ponential nature of time and capacity characteristics of
the software implementations of the method.

Based on the distribution of relative frequencies of the
observed time, the following interesting results are obtained
which are shown in Fig. 7. We have a pronounced left asym-
metry of distribution of relative frequencies, indicating that
the major part of the observed times is close to the best case.
Large times are rare enough. For the point of the sample
mean — 204.25 ms a relative frequency of 0.7138 is summa-
rized, and the sample quantile 0.95 is in point 728.70 ms,
beyond which only 500 (5%) out of 10,000 observed times
lie with a maximum value of 8888.74 ms.

According to the ranges of deviation and sampling root-
mean-square deviations for characteristics being studied,
the fact that algorithms implementing B&B belong to a
class NPRH [3] is clearly confirmed by the data on the
range of variability of the observed times: if n = 45 for op-
tion without matrix storage, we have a range from 3.38
ms to 54058.1 ms at a sample mean of 1039.08 ms. For
option with matrix storage from 2.08 ms to 8888.74 ms at
sample mean of 205.25 ms. The same significant range is
observed for the additional memory spent at n=45 — from
185 936 to 882 836 484 bytes (from 181.57 Kb to 841.39
Mb) with an average value of 30.71 MB. All these ranges

BUSINESS INFORMATICS Ne4(34)-2015

43

relative
frequencies

0,25

0,2

0,05 I

2,1
53,3
88,9

1244
160,0
195,5
2311
266,6
302,1
3377

time, ms

3732
408,8
4443
479,9
5154
551,0
586,5
622,1
657,6
693,2
728,7

Fig. 7. Relative frequencies of execution times (with matrix storage) for problem
with n=45 (first 42 half-segments out of 500 by 10,000 experiment results)

are caused by a range of variability of a number of gener-
ated nodes of the search tree — from 111 to 820,964 with
an average of 20,121.72. The presence of rare but signifi-
cantly large runs identified both large sample root-mean-
square deviations — 1783.65 ms 343.91 ms for the timed
and 49 685 928.5 bytes for the spent memory.

Based on the trend of times and additional RAM spent for
storing matrices on tops of the search tree, the authors ob-
tained the following prediction of resource characteristics for
problems with a high dimensionality presented in 7able 2.

Table 2.
Prediction of resource characteristics

Prediction of Prediction of il Prediction

N-r | tour calculation | tour calcula- i of average
of time without tion time with s requirements
cities additional additional i of additional

memory memory memory

45 1sec 0.2 sec 5 30.71 MB
54 7 s6C 1sec 7 172.3 MB

70 11.7 min 1 min 11,7 12.47 GB
80 2.5 hours 10 min 15 136.37 GB
88 19.6 hours 1 hour 19,6 924.26 GB

102 29.5 days 1 day 29,5 25.69TB

Let us note that, beginning from the input length 72,

expected memory requirements of the additional mem-
ory already exceed the modern standard volume of RAM
by 16 GB.

Conclusion

Thus, based on the experimental research consisting of
210,000 solutions of the asymmetric traveling salesman
problem with a random uniform generation of cost matri-
ces for a range of input lengths from 25 to 45, and the pro-
cessing of the results obtained, the article shows that:

<> both considered options of the classical algorithm for
solving the traveling salesman problem using the branch-
and-bound method generate software implementations
with an exponential execution time dependence on the in-
put length;

<> the use of additional memory of an acceptable volume
leads to a significant reduction of calculating time (up to
5 times with #=45, with maximum memory requirements
not exceeding 1 GB, with average requirements of 30.71
MB);

<> the obtained time distribution indicates a pronounced
left asymmetry of skewness of distribution, which leads
to «small» execution times expected within probabilistic
quantile 0.95 in rare but significant (i.e., by orders of mag-
nitudes exceeding an average value) runs;

<> software implementation of the algorithm with ma-
trix storage can be practically used for the exact solution of
the traveling salesman problem with the input length of no
more than 70 with the actually available memory of 16 GB
with an expected average computation time of about one
minute on modern personal computers. B

References

1. Little J.D.C., Murty K.G., Sweeney D.W., Karel C. (1963) An algorithm for the traveling salesman problem.

Operations Research, no. 11, pp. 972—989.

2. Goodman S.E., Hedetniemi S.T. (1981) Vvedenie v razrabotku i analiz algoritmov [Introduction to the design and

analysis of algorithms]. Moscow: Mir (in Russian).

44

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

3. Ulyanov M.V. (2008) Resursno-effektivnye komp juternye algoritmy. Razrabotka i analiz [Resource-efficiency
computer algorithms. Development and analysis]. Moscow: FIZMATLIT (in Russian).

4. Ermoshin A.S., Plisko V.A. (2006) Issledovanie dereva reshenij metoda vetvej i granic v zadache kommivojazhera
[Research of a decision tree in branch-and-bounds method for traveling salesman problem]. Programmnoe i in-
Jformacionnoe obespechenie sistem razlichnogo naznachenija na baze personal’nyh EVM [Software and information
in different systems based on personal computers]. Moscow: MGAPI, no. 9, pp. 76—82 (in Russian).

5. Sygal I.H., Ivanova A.P. (2007) Vvedenie v prikladnoe diskretnoe programmirovanie: Modeli i vichislitelnie algoritmi
[Introduction to applied discrete programming: models and algorithms]. Moscow: FIZMATLIT (in Russian).

6. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. (2005) Algoritmy: postroenie i analiz [Algorithms: Develop-
ment and analysis]. Moscow: Williams (in Russian).

7. Virt N. (2010) Algoritmy i struktury dannyh. Novaja versija dlja Oberona [Algorithms and data structure. New ver-
sion for Oberon]. Moscow: DMK Press (in Russian).

PECYPCHBLIE XAPAKTEPUCTUKU CNOCOBOB OPTAHU3ALUN [AEPEBA
PELWLEHWA B METOQIE BETBEA U FTPAHULL ANA 3AAYM KOMMUBOSKEPA

M.B. YJIIbJIHOB

00KMop mexHu4eckux Hayk, npogeccop, 6e0yulUll Hay4Hulil COMpyOHUK,
Hnemumym npobaem ynpaenenus um. B.A. Tpaneznuxoea PAH;

npogheccop denapmamenma nPoPAMMHOL UHICEHePUU,

Hauuonanvhuiii uccaedosamenvckuil ynusepcumem «Bvicuias wkoaa 3K OHOMUKU»

Adpec: 117997, e. Mockea, ya. IIpogpcorozuas, 0. 65
FE-mail: muljanov@mail.ru

M.U. DOMHYEB
cmydenm 6akanaspuama oopazoeamenvHoll npoepammel «Ilpoepammuasn umnicenepus»,
Hauuonanvhuiii uccaredosamenvckuil ynusepcumem «Bvicuias wkoaa 3K OHOMUKU»

Aodpec: 101000, e. Mockea, ya. Macnuukas, 0. 20
E-mail: mikhail fomichev94@gmail.com

Pecypcnas sgpghexmusrnocms paziuunbix pearuzayuil Memooa éemeeil U epaHuy, 018 KAACCUMECKOU 3ada4u
KOMMUBOsICepa 3a8UCUM, 8 MOM YUCAe, OM CNOC0008 0PeAHU3AUUU NOUCK0B020 0epe6a PelieHUll, NOPOICOaeM0oeo
amum memodom. Knaccuueckas dunemma «epems-namsamo» peaauzyemcs: 30ecs Aub60 6apUAHMoOM XPAHeHUs.
YCEUEHHbIX Mampuy, 6 6epuiUHaX 0epeéa pewleHuil, 4mo Npueodum K COKPAUWEHUI0 MpYyOOemMKoCmu npu
O0ONONHUMENbHBIX eMKOCHbIX 3aMPamax, Aub0 nepegoiMucieHuem Mampuyb 0s meKyueli 6epuilHbl, Ymo 6edem K
YeenuHeHuro mpyooemMKocmi npu sKkoHomuu namsmu. [lpedmemom 0anHoi cmamoi 3645emcsi IKCNEPUMEHMANbHOE
uccae008anue BPEMEHHbIX XAPAKMEPUCMUK pellleHUs 3a0a4u KOMMUBOSICepa Memoodom Gemeell U epaHul, ¢
Uenavlo onpedenerusi PeanbHo20 COKPAUCHUsT BPEMEHHbIX 3aMPam Npu UCHOAb308AHUU OONOAHUMENbHOU NaAMSIMU
8 8blOPAHHOL cMpYKmype XpaHeHus 0epesa peuienuil. Koneunoil yeavto ucciedosanus aeasemces Gopmyauposxka
peKomeHOayuil 045 pearu3ayuu Memooa 8 NPaKmu4eckKux 3a0a4ax A02UCMUKY U OU3HeC-UHMOPMAMUKU.

B cmamve Ha ocHoge nOAYYEHHbIX IKCNEPUMEHMANbHbIX OAHHbIX NOKA3GHO, YMO 004 PACCMOMPEHHbIX
8aPUAHMA KAACCUMECKO020 ANROPUMMA PellieHUs 3a0a4U KOMMUBOICEPa MemoooM 6emeell U epaHuy, Noposcoarm
NpoepAMMHble Peanu3auul ¢ KCHOHEHUUAAbHOU 3a8UCUMOCMbIO 8DEMEHU BbINOAHEHUs Om OAUHbl 6X004.
DKcnepumenmanvhvie peyavmanmbvl HO380AHOM 2080PUND, YINO B03MONCHOCTb UCHOAB306AHUS OONOAHUMEAbHOLL
namamu obsemom He 6oaee 1 16 npusodum K 3HayumenvHomy (00 nIMu pas) COKPAUCHUIO BPEMEHHbIX 3aMpPam.
TIpoenos no noayueHHomy mpendy no3goasem copmyauposams PeKOMeHOAUUI0 no NPAKMUHECKOMY NPUMEHEHUIO
NPOPAMMHOIL Pearu3ayuy are0pumma Memooa 6emeeli U epanuly, ¢ XpaHeHuem Mampuy, — npu peasbHo 00CHYNHOL
onepamuenoli namsamu ¢ 16 16 u npu oepanuuenuu oxcudaemozo cpeoreeo epemeru cuema nopsaoKa 00HOU MUHYMbL
HQA CO8PEMEHHbIX NEPCOHANbHBIX KOMNbIOMEPAX MO2ym Oblmb MOYHO peutelbl 3a0ayuu pazmeprHocmu He 6oaee 70.

BUSINESS INFORMATIGS Ne4(34)-2015 45

MATEMATUHECKUE METOLbBI N AJIFOPUTMbI BUSHEC-MHOOPMATVKA

Kiouessie ci10Ba: 3ajaua KOMMUBOSTKepa, METOJT BETBE M TPAaHUII, BpeMeHHast 1 eMKOCTHas 3¢ (HeKTUBHOCTD, CTPYKTYPhI
JAHHBIX, 9KCIIEPUMEHTAIbHOE UCCIEI0BaHME.

Iuruposanme: Ulyanov M.V., Fomichev M.I. Resource characteristics of ways to organize a decision tree in the branch-and-
bound method for the traveling salesmen problem // Business Informatics. 2015. No. 4 (34). P. 38—46.
DOI: 10.17323/1998-0663.2015.4.38.46.

Jlutepatypa

1. Little J.D.C., Murty K.G., Sweeney D.W., Karel C. An algorithm for the traveling salesman problem // Operations Research. 1963. No. 11. P.
972-989.

2. Tymman C., Xunernuemu C. BBeieHre B pa3paObOTKY M aHaAJIM3 alroputMoB. M.: Mup, 1981. 368 c.

3. VaesHOB M.B. PecypcHo-3(dheKTHBHBIE KOMITBIOTEPHBIE AITOPUTMBI. Paspabotka v aHamus. M.: DUSMATIIUT, 2008. 304 c.

4. EpwmommmH A.C., [Tmucko B.A. ViccienoBaHue nepeBa pellieHri MeTolia BETBe 1 rpaHuIl B 3a1aue KoMMuBoskepa // [IporpaMmmHoe v iH(Op-
MAaIMOHHOe 00ecrieueHre CUCTeM Pa3IMYHOTO Ha3HauYeHUsI Ha 0a3e rmepcoHanbHbIX DBM: MexBy30BcKuil cOOpHUK HaydHBIX TpynoB / [lox
pen. 1.T.H., npod. b.M.Muxaiinosa. M.: MI'AIIH, 2006. Beim. 9. C. 76—82.

5. Curan U.X., BaHosa A.I1. BeeneHure B NpuKiIaqHoOe JUCKPETHOE TIPOrpaMMUPOBAHUE: MOJIESM U BBIYMCIUTENbHBIE alropuT™bl. M.: DU 3-
MATIJINT, 2007. 304 c.

6. Kopwmen T., Jleiizepcon Y., Pusect P., IlTaitn K. Asroput™mbl: moctpoeHne 1 aHam3. 2-e usnanue: [ep. ¢ anmi. M.: Bubsimc, 2005. 1296 c.

7. Bupt H. Anroput™msl 1 CTpyKTypbl naHHBIX. HoBast Bepcust mist O6epona / Iep. ¢ anrn. M.: JIMK Tpecc, 2010. 272 c.

46 bUSHEG-HHDOPMATHUKA Ne4(34)-2015r.

