
38 BUSINESS INFORMATICS №4(34)–2015

RESOURCE CHARACTERISTICS
OF WAYS TO ORGANIZE A DECISION TREE
IN THE BRANCH-AND-BOUND METHOD
FOR THE TRAVELING SALESMEN PROBLEM

Mikhail V. ULYANOV
Leading Researcher, V.A. Trapeznikov Institute of Control Sciences,
Russian Academy of Sciences;
Professor, Software Management Department,
National Research University Higher School of Economics

Address: 65, Profsouznaya Street, Moscow, 117997, Russian Federation
E-mail: muljanov@mail.ru

Mikhail I. FOMICHEV
Student, Software Engineering Program,
National Research University Higher School of Economics

Address: 20, Myasnitskaya Street, Moscow, 101000, Russian Federation
E-mail: mikhail.fomichev94@gmail.com

The resource efficiency of different implementations of the branch-and-bound method for the classical traveling
salesman problem depends, inter alia, on ways to organize a search decision tree generated by this method. The
classic «time-memory» dilemma is realized herein either by an option of storing reduced matrices at the points of
the decision tree, which leads to reduction in the complexity with additional capacity cost, or matrix recalculation
for the current node, which leads to an increase in complexity while saving memory. The subject of this paper is an
experimental study of temporal characteristics of solving the traveling salesman problem by the branch-and-bound
method to identify a real reduction of span time using additional memory in a selected structure of a decision tree.
The ultimate objective of the research is to formulate recommendations for implementing the method in practical
problems encountered in logistics and business informatics.

On the basis of experimental data, this paper shows that both considered options of the classic algorithm for
the traveling salesman problem by the branch-and-bound method generate software implementations with an
exponential dependence on the execution time of the input length. The experimental results permit us to suggest
that the applicability of an additional memory capacity of no more than 1 GB results in a significant (up to five
times) reduction of the time span. The estimate of the resulting trend makes it possible to recommend practical
application of the software implementation of the branch-and-bound algorithm with storage of matrices - with a
really available 16 GB random-access memory and with limitation of the expected average computation time of
about one minute on modern personal computers whereby problems having a dimension no more than 70 can be
solved exactly.

Key words: traveling salesman problem, branch-and-bound method, time and memory efficiency, data structure, experimental

research.

Citation: Ulyanov M.V., Fomichev M.I. (2015) Resource characteristics of ways to organize a decision tree

in the branch-and-bound method for the traveling salesmen problem. Business Informatics, no. 4 (34), pp. 38–46.

DOI: 10.17323/1998-0663.2015.4.38.46.

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

39BUSINESS INFORMATICS №4(34)–2015

Introduction

A
large variety of practical settings in the area of

business informatics and logistics comes down

to the classical traveling salesman problem. The

abundance of heuristic methods for its solution does

not mean rejection of obtaining exact solutions for this

problem. Obviously, for precise methods having an ex-

ponential complexity the researchers would like to have

estimates of the dimension of problems which can be

solved within a reasonable time, as well as modified ex-

act algorithms with a better time efficiency.

For certain algorithms, an increase of time efficien-

cy can be achieved by using an additional amount of

available memory. This situation arises in algorithms

allowing us to replace re-computations for storing

previously obtained intermediate results. This ap-

proach can also be used for algorithms implement-

ing the branch-and-bound method for the traveling

salesman problem. By the example of modifications

of the classical algorithm for the exact solution of the

traveling salesman problem using the branch-and-

bound method proposed by J.D.C.Little, K.G.Murty,

D.W.Sweeney and C.Karel [1], this paper illustrates a

possible increase of the time efficiency using an addi-

tional memory to store matrices in the data structure

of the search decision tree.

1. Setting up the traveling

salesman problem

The problem description lies in the fact that the sales-

man has to visit a number of cities for product advertis-

ing and selling purposes. It is assumed that between each

pair of cities there is an internal transportation. Let us

call these visiting rules a tour in which each city is visited

only once. The fare between the cities is known, and, in

general, the return fare is different. The challenge is to

find the traveling salesman tour with minimal cost. It is

obvious that the number of tours is finite, and we can

solve the problem by straightforward enumeration. But,

unfortunately, a complete set will contain (n — 1)! tours,

for this reason an exhaustive solution algorithm for solv-

ing the real dimensions of the problem becomes totally

unacceptable.

Setting up the problem in terms of the graph theory is

built by association of cities with the graph nodes, and

the transport routes and fare with loaded arcs. We get a

complete directed asymmetric graph at n nodes without

proper loops prescribed by the cost matrix C

=

(c

ij
). The

problem is called symmetric if the fare between any two

cities does not depend on the direction, and asymmetri-

cal, if that is not the case. The absence of proper loops

can be denoted as . Then, the problem

is formulated as a problem of finding a covering (com-

plete) cycle at the lowest cost, which is called a tour, on a

complete directed graph specified by asymmetric (in the

general case) cost matrix C [2].

Let us also enter the problem definition in Euclidean

integral-valued space [3]. It is based on the concept

of permutation on a set of integers. Let us further rep-

resent through

a set of all permutations of

integers (it is obvious that a number of such permuta-

tions is) and consider a set of permutations

, which contains

of various permutations (exactly the number of vari-

ous tours is available in the traveling salesman problem

with n cities). Since a tour is a complete cycle across the

nodes, the initial node of the tour can be chosen arbi-

trarily. Let us fix a node number 1, and assume that some

permutation x from a set orders the tree traversal

starting from the first, and after the last point given by

this permutation, we return to the beginning of the tour.

Therefore, the components of vector x in space are

simply ordered numbers from two to n, and the vector is

associated with some permutation from , and it

can be written:

 (1)

Let us note that the sum of squares of the compo-

nents of different vectors x is the same: these are differ-

ent permutations of numbers from two to n. Thus, the

end points of various vectors x are points on the positive

hemisphere in centered at the origin and with a ra-

dius of

Let us further determine the function

which assigns the value of the edge to each ordered pair

of graph nodes, incident to this pair. In the constructed

formalism, the traveling salesman problem in space

has the following statement:

 (2)

The branch-and-bound method under further consid-

eration works, if not explicitly, with this statement of the

traveling salesman problem.

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

40 BUSINESS INFORMATICS №4(34)–2015

2. Description of branch-and-bound method

for the traveling salesman problem

The general idea of the branch-and-bound method is a

separation of the entire set of feasible solutions into sub-

sets to further reduce the enumeration - a branching pro-

cedure. Every such subset shall be linked to an estimate

(lower bound in the minimum search), providing a trun-

cation of those subsets which intentionally do not contain

an optimal solution – this is a procedure for construct-

ing bounds. Therefore, the method results in investiga-

tion of a tree solution space model. A set of all salesman

tours in which the objective functional (2) is minimized,

specifying the tour cost, is such an initial subset in the

problem under investigation. The ideas presented below

from the algorithm authors [1] are a kind of classic of the

branch-and-bound method. To construct the algorithm,

two basic procedures, i.e. branching and bounding, are

proposed. Let us consider the branching process [1]. The

construction of a search decision tree starts with the root,

which will correspond to a set of all tours, i.e., a root of

the tree is set R of all (n — 1)! tours possible tours in the

problem with n towns. The branches going out from the

root are determined by selecting one edge, for example,

arc (k, l

). The idea of the algorithm authors [1] is to divide

the current set of tours into two subsets: one which most

likely contains the optimal tour, and the other one which

most likely does not contain this tour. To do this, a spe-

cial algorithm for selecting arc (k, l

) is proposed, which

likely is a part of the optimal tour. The set R is divided into

two subsets {k, l

} and . The subset {k, l

} includes all

tours from R containing arc (k, l

), i.e. passing through it,

and the subset includes tours that do not contain

this arc. Let us note that the idea of the algorithm authors

is very promising if the branching process is organized so

that at each step the «right» edge is selected, the entire

process will be completed after n steps. A fragment of such

tree is shown in Fig. 1 (the figure is taken from paper [2]).

The lowest cost limit of any tour of this set is asso-

ciated with each tour of this set. It is obvious that the

problem is to obtain the most accurate lower bounds.

(n - dimensions, C – cost matrix.)
1. Initializaiton.
2. Reduction of cost matrix C.
3. Setting a root of the search decision tree X=R
Reduction of the initial matrix – calculation w(X).
While (w(X) < z0)
 begin

4. Selection of branching node (k, l).
5. Branching process. Creating top
and calculation w().
6. Branching process. Creating top Y
and calculation w(Y).
If (the order of cost matrix in top Y = 2)

 then
 begin

7. Performance of exhaustive estimation for top Y
If (w(Y) < z0)

 then
 begin
 z0 = w(Y)(store the tour)
 end
 end

8. Selection of the following point of the search decision tree
and setting X
9a. Calculation of matrix fragment C,
corresponding to selected top X,
based on a route from the root to the current point.

(or)
9b. Reading of matrix fragment C,
corresponding to selected top X,
from the structure of storage of the search solution tree.

 end (while w(X) < z0)
Optimal solution with cost z0 is not found.
End.

R All
Tours

Level 0

Level 1

Level 2

{3,5}{3,5}

{2,1}{2,1}

Fig. 1. Fragment of a search decision tree

The reason for that is as follows. Let us assume that a

specific complete tour T with cost s (T) has already

been obtained. If the lower bound associated with a set

of tours represented by a search tree node is higher than

s (T), then until the end of the search process this and

all subsequent points are not to be considered. In imple-

mentation this leads to truncation of the search decision

tree by shedding all leaves of the search tree having a value

higher than s (T). A detailed presentation of other steps

of the method can be found, for example, in papers [2, 3].

3. Diagram of the branch and bound method

for the traveling salesman problem

Let us present the following diagram of the branch-and-

bound method (B&B) for the traveling salesman problem,

in which the following notations are introduced [2]. Let X

be the current top of the search tree, and (k, l

) be an edge

across which the branching occurs. Let us denote the tops

immediately following X through Y and . The set Y is a

subset of tours from X passing via arc (k, l

), and set is a

subset of tours from X not passing via arc(k, l

). Let us de-

note the calculated the lowest bounds for sets Y and by

w(Y

) and w() respectively. Let us denote the cheapest tour

known to the algorithm at the given moment by z
o
, pro-

vided that at the time of initialization is z
o
 =

[1].

A(C, n) Diagram of the branch and bound method for the
traveling salesman problem

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

41BUSINESS INFORMATICS №4(34)–2015

For the purposes of this article, let us draw our atten-

tion to some stages in this enlarged scheme.

Step 1. Selection of a data structure for storing the

search decision tree is of interest here. At the same time,

it is necessary to bear in mind that a number of the search

tree points can be significant.

Step 3: Initialization of the search tree root. The main

question is whether the cost matrix will be stored togeth-

er with the top of the tree. An alternative option is to re-

calculate the cost matrix for the current top based on the

original one. This is a classical choice between perform-

ance and memory requirements. The classical algorithm

requires recalculation of the matrix costs for the newly

determined current point of the search decision tree.

Step 9. Since the node of the search tree X in step 8

has already been selected as a current one, the task of

this step is to obtain a cost matrix corresponding to top

X. If we keep the truncated cost matrices together with

the nodes of the search tree, the matrix already exists

(9b). Otherwise, we need to find a path from the root to

this node and consistently adjust the original cost matrix

(9a), i.e. re-compute it for this point.

Discussion of algorithm specifics. What results in

terms of complexity can be expected for different cost

fixed-dimension matrices? It is known and suggested

that the complexity of all more or less efficient algo-

rithms implementing the branch-and-bound method

for the traveling salesman problem in the worst case is

exponential. This assumption is based on the fact that

the traveling salesman problem is NP-hard and, there-

fore, any exact algorithm of its solution has an above-

polynomial complexity. In the best case, if the dimen-

sion of the cost matrix keeps declining, the estimate of

complexity is polynomial. This is obvious, because the

assessment of complexity of each internal step (4-9) of

the polynomial algorithm by a linear dimension n of

the cost matrix, and, in the best case, the main loop is

executed no more than n times, because the tour con-

sists of n arcs. Therefore, the spread of expected execu-

tion time with a fixed dimension of the cost matrix n

is very high and depends on the numerical values of its

elements. This is an example of quantitative parametric

algorithm, with a strong parametric dependence; the

algorithm belongs to the class NPRH [3]. Theoretical

analysis of the expected complexity for a particular en-

try based on a preliminary study of the cost matrix is

very complicated and often goes beyond the scope of

our analytical capabilities.

However, the time efficiency will be determined spe-

cifically as a selected structure to store the search de-

cision tree, and a decision in step 9 with storage or re-

computation of the current cost matrices. The matter is

that an average number of active nodes grows exponen-

tially. The experimental data from [4] gives an experi-

mentally obtained approximation .

In this regard, the effectiveness of elementary operations

with the decision tree (add, delete, select) determines

the time effectiveness of the software implementation of

the algorithm as a whole [5, p. 130-131].

4. Data structures

for the search decision tree

In order to select the data structures for the search de-

cision tree, let us look at the three best-known options of

the tree organization [6, 7], i.e. a binary heap, red-black

tree and AVL tree

Table 1 shows the complexity of operations (informa-

tion is taken from [6, 7]), which are performed above the

search decision tree in the branch-and-bound method

for the traveling salesman problem. It is evident from the

table that the operating time (asymptotically) of the in-

sert and element removal operations for all three data

structures are equal. However, the minimal element

search operation for the binary heap is performed over a

constant time, but for the AVL and red-black trees over

a logarithmic time. Moreover, in the functions of com-

plexity of these operations coefficients with the term

with higher exponent of the polynomial are much higher

for red-black and, especially, AVL trees than for the bi-

nary heap, because additional operations are spent on

the tree balance. It is also worth noting that three data

structures have the same requirements for storage O(n).

Therefore, it may be assumed that to store decision tree

leaves a binary bunch will be suitable structure as com-

pared to others, although this issue will be studied addi-

tionally and is beyond the scope of this study.

Тable 1.

Complexity of operations for various ways

of tree organization

Reference line
Binary
heap

Red-black
tree

AVL-tree

Complexity of insert O(log(n)) O(log(n)) O(log(n))

Complexity of remove O(log(n)) O(log(n)) O(log(n))

Complexity of search mini-
mal element O(1) O(log(n)) O(log(n))

On the basis of the data presented by the authors, a de-

cision was taken in this study to use a binary heap as the

structure for storing the search decision tree.

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

42 BUSINESS INFORMATICS №4(34)–2015

5. Objectives

of the experimental research

In this experimental research, the authors set the fol-

lowing objectives. The main objective is to illustrate a

possible increase of the time efficiency through the use

of additional memory for storage matrices in the search

decision tree structure. The issue concerning the effect

of matrix storage in the nodes of the search tree on the

exponent in a trend of the average calculation time or

only on a multiplicative constant in the trend function

is of additional interest. Secondary objectives were to

study a dependence of the memory capacity on the entry

length in the comparative analysis of experimental re-

sults and the data obtained in paper [4], the distribution

of the relative frequencies of the observed times, and to

obtain data on the scope of variation and sample stand-

ard deviations for characteristics under study and design

average time prediction for longer entry lengths.

6. Description of the experiment

plan and hardware

Consideration was given to an asymmetric traveling

salesman problem. The cost matrix was generated by

a pseudorandom uniform generator standard for C++

pseudo-uniform generator. In order to reduce the total

time of the experimental research, the cost matrix ele-

ments had an integer type, and a range of generation of

oriented edge weights was chosen from 1 to 215. For the

same purposes, the range of values of input lengths of

the traveling salesman problem (linear dimension of the

matrix values) from 25 to 45 with an increment of 1 was

selected.

Algorithm [1] was implemented (with no prediction of

the final tour of the greedy algorithm) with the structure

of storing the search decision tree in the form of a bina-

ry heap in the classical implementation with recalcula-

tion of the cost matrix (i.e., without using an additional

memory) and in a modified implementation with stor-

age of a local cost matrix (for nodes of the tree).

For each fixed input length, 10,000 pseudo-random

cost matrix generations were performed, for each of

which a classic algorithm implementation was started

(with recalculation of matrices) and modified algorithm

implementation (with matrix storage) [1]. The run-time

of the algorithm software implementation, generated

number of nodes of search decision tree was measured

for each start, and a maximum value of additional mem-

ory spent for matrix storage was also measured for modi-

fication with matrix storage.

Experiments were carried out on a stationary machine

with the following characteristics:

 Processor: Intel i7 3770K 3800 GHz;

 Random access memory: Kingston KHX-

1600C9D3P1 16 GB;

 Motherboard: GIGABYTE GA-Z77X-D3H;

 Operating system: Fedora 21 workstation.

The algorithms are implemented in language C++.

The compiler version: gcc 4.9.2 20150212 (Red Hat

4.9.2-6) (GCC). Let us note that in this regard the total

time of computational experiment (10,000 starts for 21

values of the input length) was about 20 hours.

7. Results and discussion

Within the main objective of the study the authors ob-

tained the results shown in Fig. 2 and 3. For both options

of organization of the decision tree (matrix storage or re-

computation) the observed average time grows exponen-

tially. At the same time, we have to note that the option

Fig. 2. Dependence of an average time of tour calculation
without additional memory on the input length

Fig. 3. Dependence of an average time of tour calculation
on the input length with the additional memory

25 30 35 40 45

1200

1000

800

600

400

200

0

time, ms

number or towns

y = 0,0114 e0,2562x

R2 = 0,9987

25 30 35 40 45

200

150

100

50

0

time, ms

y = 0,0077 e0,2271x

R2 = 0,9997

number or towns

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

43BUSINESS INFORMATICS №4(34)–2015

with matrix storage results in a change of not only the

multiplicative constant, but also the exponent.

From the trend of experimental results (Fig. 2 and 3)

it follows that with an increase of the input length of the

problem the observed reduction of time d(n) (time ratio)

will grow in trend . The results and

trend d(n) are provided in Fig. 4.

It is evident that the effect of matrix storage will be higher,

the deeper the search tree, as a «long» path from the root

leads to more complicated recalculations for the original

matrix. Our experimental data shows that the use of addi-

tional memory reduces the exponent from 0.2562 to 0.2271,

i.e. by 0.0291. For the problem with 45 cities this reduction

was 5.087 times (from 1.04 to 0,204 sec), all of which indi-

cates considerable option efficiency with additional mem-

ory. The resulting trend for d(n) suggests that the observed

reduction of time will also increase with the increase of the

input length. The resulting prediction is given below.

The following results are obtained for additional goals

of the research.

The results on dependence of additional memory ca-

pacity on the input length are shown in Fig. 5. For input

length 45 the additional memory requirements average

30.71 MB, providing a 5-fold reduction of time.

By comparative analysis of the experimental results and

data obtained in paper [4] on dependence of the aver-

age number of nodes of the search decision tree on the

input length, the results obtained by the authors (Fig. 6)

give the following trend of estimate of an average num-

ber of nodes of the decision tree: that

is qualitatively comparable with the results from [4] –

. By the exponent, a disagreement

with our data is not more than 0.65%.

Fig. 4. Dependence of a relation of the average time of tour calculation
without additional memory to the average time of tour calculation

with the additional memory on input length

Fig. 5. Dependence of the average capacity of additional
memory on the input length

The discrepancy in the multiplicative constant can be

attributed to lower values in a range of studies in paper

[4] – from 10 to 30 and may be specifics of the initial

data generation. The exponential growth of a number of

generated tops of the search decision tree defines the ex-

ponential nature of time and capacity characteristics of

the software implementations of the method.

Based on the distribution of relative frequencies of the

observed time, the following interesting results are obtained

which are shown in Fig. 7. We have a pronounced left asym-

metry of distribution of relative frequencies, indicating that

the major part of the observed times is close to the best case.

Large times are rare enough. For the point of the sample

mean – 204.25 ms a relative frequency of 0.7138 is summa-

rized, and the sample quantile 0.95 is in point 728.70 ms,

beyond which only 500 (5%) out of 10,000 observed times

lie with a maximum value of 8888.74 ms.

According to the ranges of deviation and sampling root-

mean-square deviations for characteristics being studied,

the fact that algorithms implementing B&B belong to a

class NPRH [3] is clearly confirmed by the data on the

range of variability of the observed times: if n = 45 for op-

tion without matrix storage, we have a range from 3.38

ms to 54058.1 ms at a sample mean of 1039.08 ms. For

option with matrix storage from 2.08 ms to 8888.74 ms at

sample mean of 205.25 ms. The same significant range is

observed for the additional memory spent at n=45 – from

185 936 to 882 836 484 bytes (from 181.57 Kb to 841.39

Mb) with an average value of 30.71 MB. All these ranges

Fig. 6. Dependence of the average number of nodes
of the search decision tree on the input length

25 30 35 40 45

40000000

35000000

30000000

25000000

20000000

15000000

10000000

5000000

0

memory capacity

y = 716,09 e0,2392x

R2 = 0,9995

number or towns

25 30 35 40 45 number or towns

y = 0,0114 e0,2562x

R2 = 0,9987

6

5

4

3

2

1

0

25 30 35 40 45 number or towns

y = 5,323 e0,1831x

R2 = 0,9988

25000

20000

15000

10000

500

0

number or nodes

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

44 BUSINESS INFORMATICS №4(34)–2015

are caused by a range of variability of a number of gener-

ated nodes of the search tree – from 111 to 820,964 with

an average of 20,121.72. The presence of rare but signifi-

cantly large runs identified both large sample root-mean-

square deviations – 1783.65 ms 343.91 ms for the timed

and 49 685 928.5 bytes for the spent memory.

Based on the trend of times and additional RAM spent for

storing matrices on tops of the search tree, the authors ob-

tained the following prediction of resource characteristics for

problems with a high dimensionality presented in Table 2.

Тable 2.

Prediction of resource characteristics

N-r
of

cities

Prediction of
tour calculation

time without
additional
memory

Prediction of
tour calcula-
tion time with

additional
memory

Predic-
tion

of time
relation

Prediction
of average

requirements
of additional

memory

45 1 sec 0.2 sec 5 30.71 МB

54 7 sec 1 sec 7 172.3 МB

70 11.7 min 1 min 11,7 12.47 GB

80 2.5 hours 10 min 15 136.37 GB

88 19.6 hours 1 hour 19,6 924.26 GB

102 29.5 days 1 day 29,5 25.69 TB

Let us note that, beginning from the input length 72,

expected memory requirements of the additional mem-

ory already exceed the modern standard volume of RAM

by 16 GB.

Conclusion

Thus, based on the experimental research consisting of

210,000 solutions of the asymmetric traveling salesman

problem with a random uniform generation of cost matri-

ces for a range of input lengths from 25 to 45, and the pro-

cessing of the results obtained, the article shows that:

 both considered options of the classical algorithm for

solving the traveling salesman problem using the branch-

and-bound method generate software implementations

with an exponential execution time dependence on the in-

put length;

 the use of additional memory of an acceptable volume

leads to a significant reduction of calculating time (up to

5 times with n=45, with maximum memory requirements

not exceeding 1 GB, with average requirements of 30.71

MB);

 the obtained time distribution indicates a pronounced

left asymmetry of skewness of distribution, which leads

to «small» execution times expected within probabilistic

quantile 0.95 in rare but significant (i.e., by orders of mag-

nitudes exceeding an average value) runs;

 software implementation of the algorithm with ma-

trix storage can be practically used for the exact solution of

the traveling salesman problem with the input length of no

more than 70 with the actually available memory of 16 GB

with an expected average computation time of about one

minute on modern personal computers.

Fig. 7. Relative frequencies of execution times (with matrix storage) for problem
with n=45 (first 42 half-segments out of 500 by 10,000 experiment results)

References

1. Little J.D.C., Murty K.G., Sweeney D.W., Karel C. (1963) An algorithm for the traveling salesman problem.

Operations Research, no. 11, pp. 972–989.

2. Goodman S.E., Hedetniemi S.T. (1981) Vvedenie v razrabotku i analiz algoritmov [Introduction to the design and

analysis of algorithms]. Moscow: Mir (in Russian).

0,25

0,2

0,15

0,1

0,05

0

2,
1

53
,3

88
,9

12
4,

4

16
0,

0

19
5,

5

23
1,

1

26
6,

6

30
2,

1

33
7,

7

37
3,

2

40
8,

8

44
4,

3

47
9,

9

51
5,

4

55
1,

0

58
6,

5

62
2,

1

65
7,

6

69
3,

2

72
8,

7

relative
frequencies

time, ms

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

45BUSINESS INFORMATICS №4(34)–2015

3. Ulyanov M.V. (2008) Resursno-effektivnye komp’juternye algoritmy. Razrabotka i analiz [Resource-efficiency

computer algorithms. Development and analysis]. Moscow: FIZMATLIT (in Russian).

4. Ermoshin A.S., Plisko V.A. (2006) Issledovanie dereva reshenij metoda vetvej i granic v zadache kommivojazhera

[Research of a decision tree in branch-and-bounds method for traveling salesman problem]. Programmnoe i in-

formacionnoe obespechenie sistem razlichnogo naznachenija na baze personal’nyh EVM [Software and information

in different systems based on personal computers]. Moscow: MGAPI, no. 9, pp. 76–82 (in Russian).

5. Sygal I.H., Ivanova A.P. (2007) Vvedenie v prikladnoe diskretnoe programmirovanie: Modeli i vichislitelnie algoritmi

[Introduction to applied discrete programming: models and algorithms]. Moscow: FIZMATLIT (in Russian).

6. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. (2005) Algoritmy: postroenie i analiz [Algorithms: Develop-

ment and analysis]. Moscow: Williams (in Russian).

7. Virt N. (2010) Algoritmy i struktury dannyh. Novaja versija dlja Oberona [Algorithms and data structure. New ver-

sion for Oberon]. Moscow: DMK Press (in Russian).

РЕСУРСНЫЕ ХАРАКТЕРИСТИКИ СПОСОБОВ ОРГАНИЗАЦИИ ДЕРЕВА

РЕШЕНИЙ В МЕТОДЕ ВЕТВЕЙ И ГРАНИЦ ДЛЯ ЗАДАЧИ КОММИВОЯЖЕРА

М.В. УЛЬЯНОВ
доктор технических наук, профессор, ведущий научный сотрудник,
Институт проблем управления им. В.А.Трапезникова РАН;
профессор департамента программной инженерии,
Национальный исследовательский университет «Высшая школа экономики»

Адрес: 117997, г. Москва, ул. Профсоюзная, д. 65
E-mail: muljanov@mail.ru

М.И. ФОМИЧЕВ
студент бакалавриата образовательной программы «Программная инженерия»,
Национальный исследовательский университет «Высшая школа экономики»

Адрес: 101000, г. Москва, ул. Мясницкая, д. 20
E-mail: mikhail.fomichev94@gmail.com

Ресурсная эффективность различных реализаций метода ветвей и границ для классической задачи
коммивояжера зависит, в том числе, от способов организации поискового дерева решений, порождаемого
этим методом. Классическая дилемма «время-память» реализуется здесь либо вариантом хранения
усеченных матриц в вершинах дерева решений, что приводит к сокращению трудоемкости при
дополнительных емкостных затратах, либо перевычислением матрицы для текущей вершины, что ведет к
увеличению трудоемкости при экономии памяти. Предметом данной статьи является экспериментальное
исследование временных характеристик решения задачи коммивояжера методом ветвей и границ с
целью определения реального сокращения временных затрат при использовании дополнительной памяти
в выбранной структуре хранения дерева решений. Конечной целью исследования является формулировка
рекомендаций для реализации метода в практических задачах логистики и бизнес-информатики.

В статье на основе полученных экспериментальных данных показано, что оба рассмотренных
варианта классического алгоритма решения задачи коммивояжера методом ветвей и границ порождают
программные реализации с экспоненциальной зависимостью времени выполнения от длины входа.
Экспериментальные результаты позволяют говорить, что возможность использования дополнительной
памяти объемом не более 1 Гб приводит к значительному (до пяти раз) сокращению временных затрат.
Прогноз по полученному тренду позволяет сформулировать рекомендацию по практическому применению
программной реализации алгоритма метода ветвей и границ с хранением матриц – при реально доступной
оперативной памяти в 16 Гб и при ограничении ожидаемого среднего времени счета порядка одной минуты
на современных персональных компьютерах могут быть точно решены задачи размерности не более 70.

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

46 БИЗНЕС-ИНФОРМАТИКА №4(34)–2015 г.

Ключевые слова: задача коммивояжера, метод ветвей и границ, временная и емкостная эффективность, структуры

данных, экспериментальное исследование.

Цитирование: Ulyanov M.V., Fomichev M.I. Resource characteristics of ways to organize a decision tree in the branch-and-

bound method for the traveling salesmen problem // Business Informatics. 2015. No. 4 (34). P. 38–46.

DOI: 10.17323/1998-0663.2015.4.38.46.

Литература

1. Little J.D.C., Murty K.G., Sweeney D.W., Karel C. An algorithm for the traveling salesman problem // Operations Research. 1963. No. 11. P.

972–989.

2. Гудман С., Хидетниеми С. Введение в разработку и анализ алгоритмов. М.: Мир, 1981. 368 с.

3. Ульянов М.В. Ресурсно-эффективные компьютерные алгоритмы. Разработка и анализ. М.: ФИЗМАТЛИТ, 2008. 304 с.

4. Ермошин А.С., Плиско В.А. Исследование дерева решений метода ветвей и границ в задаче коммивояжера // Программное и инфор-

мационное обеспечение систем различного назначения на базе персональных ЭВМ: Межвузовский сборник научных трудов / Под

ред. д.т.н., проф. Б.М.Михайлова. М.: МГАПИ, 2006. Вып. 9. С. 76–82.

5. Сигал И.Х., Иванова А.П. Введение в прикладное дискретное программирование: модели и вычислительные алгоритмы. М.: ФИЗ-

МАТЛИТ, 2007. 304 с.

6. Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ. 2-е издание: Пер. с англ. М.: Вильямс, 2005. 1296 с.

7. Вирт Н. Алгоритмы и структуры данных. Новая версия для Оберона / Пер. с англ. М.: ДМК Пресс, 2010. 272 с.

МАТЕМАТИЧЕСКИЕ МЕТОДЫ И АЛГОРИТМЫ БИЗНЕС-ИНФОРМАТИКИ

