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Abstract

The ability to scale is a desirable business requirement for computer systems. Distributed systems clearly
demonstrate this ability and might to process very large volumes of data. Many systems with distributed
architecture are based on the distributed hash table (DHT), which manages a set of distributed network
nodes connected not only by a physical channel, but also by an additional overlay network. This overlay
network is used for searching nodes and for distributing tasks among them. The main feature of this approach
is that there is no central element or node which knows the global topology of the network. Nodes in the
network are searched by passing a query message from one node to another. Despite that, every node has
knowledge only about a small number of other nodes, and the network is organized in such a way that search
involves a logarithmical number of nodes.

There are several DHT implementations which specify how to construct and how to support the structure
of the network. In this paper, we demonstrate the way in which such a network can be constructed much
simpler by applying the sight modification of the recently published Metrized Small World algorithm to the
case of one dimension. We provide a theoretical analysis for the case of uniform distribution and empirical
analysis for other distributions. The main advantage of the proposed algorithm is that it is immutable to data
distribution and does not need to support any particular distribution of the length.

In addition, we show how to separate completely the concept of network location of data from the search
functionality. This separation is important, for instance, for building global storages where data is owned
by multiple parties and each party is interested in keeping control over the aspects of physical storage and
access to the data it owns. So in contrast to DHT, insertion of new data does not require relocation to an
existing node.

Key words: nearest neighbor search, metric space, distributed computing, Internet technology and applications,
data structure, algorithm.

Citation: Ponomarenko A.A., Malkov Yu.A., Logvinov A.A., Krylov V.V. (2016) An overlay network for distributed
exact and range search in one-dimensional space. Business Informatics, no. 1 (35), pp. 26—36.
DOI: 10.17323/1998-0663.2016.1.26.36.

BUSINESS INFORMATICS No. 1(35) — 2016
26



Introduction

he scalability of a computer system is its ability

I to handle a growing amount of work [4]. It can

also be referred to as the capability of a system

to increase its performance under an increasing load.

An analogous meaning is implied when the word “scal-

ability” is used in an economic context, where scalabil-

ity of a company implies that the underlying business

model offers the potential for economic growth within

the company. The concept of scalability is desirable in
technology as well as in the business setting.

Data storage is a central part of any computer system.
The scalability of any computer system strongly depends
on the ability to scale its data storage. Traditionally, in
most cases developers use relational database manage-
ment systems (RDBMS) as a data storage. Unfortunate-
ly, scalability of RDBMS has inherent limitations [7].
The reason is that to support transactions and consist-
ency, RDBMS need a central coordination point such as
a transaction manager, which becomes a bottleneck with
a growing number of servers on which RDBMS are de-
ployed. Moreover, most RDBMS have an architecture
in which servers have to share data with each other and
therefore have to be synchronized, and this is a difficult
task for a large number of servers.

To overcome the scalability problems, it was decided
to sacrifice some part of functionality for a better per-
formance [5]. Thus NoSQL databases appeared. The
most important class of “NoSQL” databases is the key-
value stores. Such systems mainly support two opera-
tions: retrieving and storing data by a given key. Many
popular internet services are based on key-value stor-
ages. For example, the messaging system of Facebook
and store of dashboard messages of SoundCloud both
use Apache Cassandra; many products of Google such
as Gmail, YouTube, Google Maps are based on BigTa-
ble, which is also a key-value store.

One of the possible ways to implement scalable key-
value storage is to use a distributed hash-table (DHT).
The distributed hash table is a class of systems which al-
lows you to store and to search data by key in a set of net-
work nodes [17]. A particular implementation of DHT is
a protocol which specifies how nodes communicate and
how they form an overlay network. It is important that
every node doesn’t know a full topology of the network.
Instead, every node stores only a small amount of infor-
mation about the network, which in turn is stored in a
routing table. Every node has its own key — ID, which
typically is a hash value, calculated from its IP address.
The data with some key k is placed on the node which
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ID is closer to k than ids of other nodes in terms of some
distance function d. The search is performed using a
greedy algorithm by passing query message from one
node to another, based on the list of nodes stored at eve-
ry node in the routing table. Different DHT implemen-
tations use different distance functions. For instance, it
can be a simple difference between two numbers x and y
d(x, y) = (x — y)mod n [16] or it can be an XOR-metric
defined as d(x, y) = x@y) [14].

The main advantage of all DHT implementations is
that the expected number of nodes that a query mes-
sage should pass before it reaches the destination node
is log(n). Here n is the total number of nodes in the net-
work. Moreover the maximum size of a routing table at
any node is also proportional to /og(#n). These two prop-
erties together make DHT scalable. So the insertion of
new nodes adds a very small overhead to the whole per-
formance of the system.

The secret of these two properties lies in the structure
of the routing table that is supported at every node. The
main idea of all implementations of DHT is to maintain
the routing tables in such a way that the i-th record in the
routing table (link) of a particular node with id 4 points
to the node with id B such that the distance from A to
B belongs to the interval 2" < d(4, B)<2™'. This gives
what in turns corresponds to the power law probability
distribution of links length P ~ d™'. When a new node is
being inserted, DHT explicitly forms the routing table
of the new node and updates the routing tables of the ex-
isting nodes according to this distribution. Together, all
nodes with their routing tables form an overlay network
which can be represented by graph G(V, E), where the
set of vertices Vis a set of network nodes and F'is a set of
edges corresponding to the records in the routing tables.
So any particular implementation specifies how to build
graph G and how to support it.

As previously mentioned, all DHT implementations
form i-th record in the routing table for node A4 explicitly
by finding node Bsuch that2’ < d(A4, B) <2""in order to
build a graph where the greedy walk algorithm can find a
closest node to a given key with log(n) steps.

In this paper we describe an algorithm which con-
structs a graph with similar navigation properties more
naturally and more simply without an explicit support
of a particular distribution of the links length. We apply
our approximate algorithm suitable for a general met-
ric space [12, 13] with a slight modification of the in-
sertion algorithm to the exact search in the one-dimen-
sional case. Unfortunately, the theoretical analysis of the
search algorithm for a general case of Metrized Small
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World is still absent. In this paper in section 4 we provide
such analysis for the one-dimensional case. In the sec-
tion 5, we give an empirical study of degree distribution,
independence from data distribution, stability analysis
and dependency of the search algorithm complexity on
its parameters.

Note that previously the algorithm for the case of one
dimension was mentioned and used as a basic algorithm
for building a multi-attribute data structure in the paper
[11]. This paper wrongly refers to the paper with the title
“Single-attribute distributed Metrized Small World data
structure” where this algorithm should be described in
detail; however this paper by mistake was not published.
In the presented paper we want to fill this gap. For con-
sistency purposes. We provide this algorithm in section 2.
We describe the insertion and search algorithms in detail
with the complex empirical study and theoretical analysis.

We also suggest how to completely separate the con-
cept of network location of the data from the search func-
tionality. This separation is important, for instance, for
building global distributed storages where data is owned
by multiple parties and each party is interested in keeping
control over the aspects of physical storage and access to
the data it owns. So in contrast to DHT, insertion of new
data does not require relocation of the existing node. In
this way, the proposed overlay network with the search and
insertion algorithm can be considered as a data structure
built onto a data set.

The rest of the paper is structured as follows. Section 1
describes the Metrized Small World overlay data structure
and its mapping to the network node collection. Section 2
specifies the data insertion algorithm. Section 3 describes
the data search algorithms. In section 4 we prove that the
search algorithm has O(logn) complexity. Section 5 pro-
vides the experimental data and gives an analysis of the
properties of the proposed structure. Finally, we summa-
rize our contributions in the Conclusion.

1. One-dimensional
Metrized Small World network

The distributed Metrized Small World (MSW) struc-
ture consists of a number of fully interconnected network
nodes (so that each network node can communicate di-
rectly with another node). Each node contains a number
of data units. Both nodes and data units have identifiers
unique in the context of the whole structure. Node identi-
fiers are resolved to network addresses (e.g. DN to IP) by
an external system (such as DNS). A data unit identifier
contains the identifier of a node on which the unit is al-
located, thereby allowing instant identification of a net-
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work node containing the data unit. This makes it possible
to create an overlay structure on data unit level, which is
inherently mapped to the physical network nodes. Each
data unit A4 stores a mutable set N(A) of identifiers of other
data units, which are the links that constitute the over-
lay network. The overlay network can be considered as a
graph G(V, E), where the set V corresponds to the set of
all data units and the set E contains an edge (A, B) if data
unit A has a link to data unit B.

All links are bidirectional, i.e. each data unit is linked
with data units linked with it. Nodes are not directly
aware of each other; identifiers of other nodes can only
be obtained from the links to data units allocated on
those nodes.

An illustration of the structure is given on Figure 1. The
structure is allocated on three network nodes identified by
unique URL addresses. Data units are allocated on these
nodes and also have unique URL addresses which are
sub-URLs of the nodes. The overlay structure is built on
the data units; the nodes do not have direct links to each
other. The algorithms of data unit insertion and search op-
erate solely on the overlay structure formed by data units,
and links between them are completely agnostic to the
physical node collection supporting the structure (data
unit identifiers are treated as atomic by the algorithms).
The choice of a node to allocate a new data unit or the de-
cision to add a new node are completely independent of
the data unit insertion algorithm which is executed after
the new data unit is allocated. The introduction of a new
node does not affect the existing overlay structure or the
distribution of data units between nodes; it merely pro-
vides new allocation space and processing power for in-
sertion and search algorithms.
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Fig. 1. An overlay network structure constructed on a set of data units
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The overlay structure is accessed in a locally iterative
manner, starting from an arbitrary known data unit (en-
try point) and following the links contained in the vis-
ited data units. To find a relevant data unit, one must
choose an entry point and navigate through the struc-
ture, choosing a link at each step.

To make this process efficient, two requirements must
be met:

1. There should be a relatively short path between the
entry point and the target data unit. Since neither the
entry point nor the target data unit are known before-
hand, a short path must exist between any pair of data
units in the structure;

2. A criterion must exist which would allow us to de-
cide which link at each step will bring the search process
closer to the result. It is also desirable that the gradient of
the proximity criterion corresponds to the shortest path
to the result in the structure, avoiding false local mini-
mums when possible.

To address the first requirement, we have developed a
data unit insertion algorithm that incrementally produc-
es a structure with small-world properties. The small-
world graphs [1, 2, 19] have the essential property that
they have a short path between any two vertices while
most vertices are not neighbors of each other.

To address the second requirement, a data unit con-
tains searchable information and non-searchable in-
formation. As a model of searchable information in
this paper, we consider the set of objects U that can be
bijectionally mapped to the unit interval of real num-
bers. For example, U can be a set of all possible strings
§=(8),-.-,5,), where s, is the index of a symbol in the al-
phabet B. If we define a mapping,

n

S i

=2 gy

For the purposes of the description of algorithms,
we will denote as C(D,) a mapped value of the search-
able information of the data unit D,. We used a simple
metric M between data units w hich is calculated as
M(D,,D,)=|C(D,)-C(D,)|. This metric is used both by
the insertion and search algorithms. Such a simple mod-
el of the searchable information allows us to make the
search exact, since there is a natural linear order on the
set of real numbers. This order is related to the metric
M. Based on the linear order, the insertion algorithm has
an ability to find the exact Voronoi’s neighbors for every
data unit. That is the main advantage of this model in
contrast with an approximate search in a general metric
space [10, 12, 13], where it is hard to find the Voronoi’s
neighbors exactly.
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However, this approach is useful for the key-value stor-
ages and systems like CAS (Content Addressable Storage)
[18] where a content-derived location-agnostic identifier
of the data object, e.g. hash-code, is transformed into a
content-agnostic location identifier, e¢.g. network or disk
address, by the use of which the data object is retrieved. In
terms of the MSW structure, the content-derived iden-
tifier would constitute the searchable information of the
data unit and the content would be the non-searchable in-
formation. As a result of the search process, the content-
derived identifier will be transformed into the identifier of
the data unit which stores the content.

Other comparable solutions are the distributed hash
table (DHT) [3] systems such as Chord [16]. These sys-
tems use a consistent hashing approach [8] to decide
which network node will store the data unit. Insertion of
a new network node requires relocation of K/n number
of data units on average where K is the total number of
data units and # is the number of nodes. In the MSW
system, by contrast, insertion of a new node does not
affect existing nodes because allocation of data units is
completely irrelevant to the search and insertion algo-
rithms. The new node becomes involved in the structure
when a data unit allocated on the new node is added to
the MSW structure using an entry point on one of the
existing nodes. Another difference from the DHT sys-
tems is that MSW creates an overlay network on the data
unit level while the overlay network of DHT systems like
Chord is built on the node level.

A detailed description of the technological aspects of
a scalable database system based on the MSW structure
is presented in [9].

2. Data insertion algorithm

The purpose of the data unit insertion algorithm is
to connect a newly allocated data unit to the structure
by populating its list of links and correspondingly ex-
tending link lists of the data units chosen to be con-
nected with the new data unit so that the greedy walk
algorithm can find any data unit starting from any data
unit. When there is an ordering relationship R related
to the distance metric (for example the natural order of
rational numbers), we can ensure the greedy search is
guaranteed by connecting each data unit with its direct
predecessor Dm and direct successor D — in contrast
to an approximate search for a general metric space. In
order to make the search algorithm faster, we addition-
ally connect a new data unit with other m closest data
units and do not remove these links during evolution of
the structure.
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The pseudo code of the algorithm is presented below.

Insertion_with_Order
Input: D — new data unit; Dep — entry point data
unit; m — parameter (small natural number).

l.LetD =D,
2. Foreach D e M(D, ) calculate M,.= M (D, D, ).

3. If min(M, <MD, , D, ) let D, = D, for which
M= min(M) and go to step 2.

4.1fCD,,) <D, )letD =D andlet D be thedi-
rect successor of D chosen from the neighbors of D_ .

5.11¢,,,) >aD,,)let D, =D, andlet D be the
direct predecessor of D chosen from the neighbors of
D

cur®

6. Connect D, with DW and D_ _ifthey exist.

suce

7. Repeat m times:

7.1.0f D, exists, let D;rg be the direct predecessor of
Dm chosen from its neighbors.

7.2.1f D exists, let D], be the direct successor of

succ

D_ . chosen from its neighbors.

SuUc

7.3. If none of D and D], exist then break.

7.4. If only D’ exists or M ,D Y<MD .D )

pre® "~ new succ > new

connect D, and D, ,andletD = D’ .
7.5. Ifonly D/, _existsor M(D, ,D_)<M(D D, )

suce suce >~ new pre> " new

connect D and D, ,andletD =D .

At each iteration, the algorithm obtains the neigh-
bors of the current data unit D closest to D  and
calculates the distance M, to each of them. After that,
the algorithm updates D and makes the next itera-
tion. So, we use a kind of greedy search algorithm to
find the data unit closest to the new data unit (after all
iterations the closest to D data unit will be in D_ ).
We find out whether D precedes or follows D and
connect the new data unit with its direct predecessor
Dm and direct successor D . Finally, we connect the
new data unit with m closest existing data units from
the right (succeeding data unit) and left (preceding

data unit) side of it.

3. Search algorithm

The greedy search algorithm finds a data unit with a
string closest to a given string Sq starting from the entry
point data unit De,,- If there is a data unit with a string
identical to Sq present in the structure, the greedy algo-
rithm will return this data unit. For brevity, we will treat
each data unit as if it were the same entity as the search-
able string which it contains.

30

Greedy_Search
Input: Sq— key; De,, — entry point data unit.
Return: data unit which is closest to Sq.
l.LetD, =D,.

2. Foreach D e M(D,_ ) calculate M= M (D, Sq).

cur

3. If min(M,>M(D,,, Sq), thenreturn D, .

4. Let D, = D for which M,= min(M,) and go to step 2.

The greedy search algorithm described above relies
on the fact that each data unit is always connected by
the insertion algorithm with its direct predecessor and
successor in the order defined by natural order of values
C(D,). This ensures absence of false local minimums in
the structure. In section 4, we will show that the com-
plexity of this search algorithm grows logarithmically
with the number of data units in the structure.

Since all data units are ordered, it is possible to define
an operation that retrieves all data units from the given
interval. We will denote the direct predecessor of ele-
ment x as Dpre(x) and the direct successor of x as D, (x).
The pseudo code of range search is presented below.

Range_ Search
Input: Lq — left bound; Rq — right bound; Dep — entry
point data unit.

Return: the set of data units from interval [Lq, Rq].

L,+R,

1. Let D 5

. = Greedy Search (
2.T=2;D,,=D,,
3.While D, >L do T=TuD, andletD, =D, (D,);
4.LetD, =D, (D).

3.While D, < Rq doT=TuD, andletD =D (D, ),
4. Return 7.

.D,,)

The idea of the range search algorithm is very simple.
We start from the center of the interval, go left until we
reach the left bound and collect all data units to the set
T. After that, we do the same in the opposite direction
until we reach the right bound and return the set 7 as a
result.

4. Theoretical analysis
of the search algorithm

Theorem. The algorithm Greedy Search has O(logn)
complexity in the structure formed by the construction
algorithm Insertion_with_Order.

Proof. Let us assume that the images C(D,) are uni-
formly distributed in the segment [0, 1]. The goal is to
demonstrate that each time the size of the structure
doubles, the average number of steps required to reach
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any data unit from any other data unit increases by an
amount bounded by a constant, thereby producing loga-
rithmic search complexity growth. First, we consider the
situation when we have the set of N first data units in
the structure. We call this set the first generation. Let us
assume that we can reach any data unit from any oth-
er data unit in at most P steps. The probability density
of the metric distance L between adjacent (in terms of
metric) data units falls exponentially, so if we ignore the
intervals between adjacent data units R times larger than
average (i.e. larger than R/N) we omit only exponen-
tially small number of cases. We thereby ignore the rare
cases of very large gaps between adjacent data units in
the first generation.

Next, we add N of the second generation data units,
i.e. double the number of data units. Consider the larg-
est interval between adjacent data units in first genera-
tion. The number of second generation data units k fall-
ing into the interval conforms to the Poisson distribution

k
p(k)= %e‘l for large N.

Since the length of the interval is R/N we have the ex-
pected value of the number 7, of second generation data

units falling into the interval A = R and hence
k

— R -R
p(k) = He .

If we assume that n,, < M we will be wrong only in a
small number of cases if M is large enough. Now we will
determine the upper bound U on the number of steps
required to reach any data unit from any other data unit
after the insertion of the second generation data units.
Consider the worst case when both initial and target data
units belong to the second generation. We are taking into
account only the links between adjacent first generation
data units, adjacent second generation data units and
adjacent first and second generation data units, which

Avg. path length

23
$
12 *
19
17 * *
=

15 i
13 ¥
11

g A Number of data units in structure
1,00E+03 1,00E+04 1,00E+05 1,00E+06

4 Uniform PowerLaw aNorm X LogNorm 3 10Centers

Fig. 2. Average path length for different distributions
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are a subset of all links in the structure, which further
increases U. The links between adjacent first generation
data units are longer in terms of metric than the links be-
tween adjacent data units in the second generation.

Hence, the former links are preferable to the latter in
reaching the target data unit in the smallest number of
steps. At most, M steps are required to reach the clos-
est first generation data unit from the initial data unit,
at most, P steps are required to reach the first genera-
tion data unit closest to the target data unit, and again, at
most, M steps are required to reach the target data unit
from the closest first generation data unit.

Therefore, at most P+ 2 M steps are required to reach
any data unit from any other data unit after the insertion
of second generation data units. Thereby, we have shown
that when the structure size is doubled, the number of
search steps is only increased by the constant 2 M, which
means that we have O(logn) search complexity where is
the number of data units in the structure.

5. Simulations

We have implemented a single-attribute MSW struc-
ture. The simulations have been performed for different
numbers of data units in the structure and for different
values of parameter m of the insertion algorithm.

Figure 2 shows the average path length (number of
steps) which the search algorithm needs to reach the
data unit closest to the query. Networks with sizes in
range from 1000 to 1000000 were generated by the In-
sertion_with_Order algorithm on the set of real numbers
which has five different random distributions: uniform
on the segment [0, 1], power law with power 0.5; nor-
mal distribution with mean 0.0 and standard deviation
1.0; log-normal with mean 4.0 and standard deviation
0.5; and points distributed normally with deviation 1.0
around 10 centers {-10.0, -7.0, -5.0, 0.0, 1.0, 2.0, 10.0}.

Avg. path length deviation

0,04
*
0,03
0,02 *
* * %
0,01 *
*
0 $ 1E04 16405 1E+06
* + 4 1Bt H
X P A
0,01 # a3 % S
-0,02 Number of data units in structure
-0,03
-0,04
<4 Uniform PowerLaw A Norm xLogNorm 3 10Centers

Fig. 3. Deviation of average path for different distributions
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Avg. path length

25
20
15
10
5
0l Number of data units in structure
1E+03 1E+04 1E+05 1E+06
—4—m=1 m=3 —&— M=6
—%—m=15 —¥k—m=36 —— m=55

Fig. 4. Average path length of search algorithm

The deviations of the path length from the average value
for the different distributions are shown in Figure 3.

As can been seen from Figure 2 and 3, the structure
demonstrates clear logarithmic dependency from the
structure size with very small deviation for all distribu-
tion types. Independence of different distributions was
expected, since all algorithms of the MSW structure do
not directly use the value of distance between data units
and are based only on the relative order. Therefore, all
remaining simulations have been performed on the sets
of data units whose images have been uniformly distrib-
uted on the interval (0, 1).

Avg. path length
23

21

19 3

17 ]

15

1 2 4 8 16 32 64

—4+—1m —»—100k 500k —%—50k —aA—1k —e—D>5k

Fig. 5. Dependency of path length for parameter m
for fixed structure sizes 1K-1M

Figure 4 and 5 show dependency of the path length
on the parameter m. Figure 4 presents results for various

structure sizes and Figure 5 for six different fixed sizes:
1 million, 500 thousand, 100 thousand, 50 thousand, 5
thousand and 1 thousand data units. As can be seen from
Figure 5, the dependence of the average path length on
the parameter m is close to inverse logarithmic law.

In order to study how the network nodes, which
are presented as data units, may be loaded during the
search, we have measured how often the search algo-
rithm visits the particular data unit. The value of loading
was calculated as a fraction of the number of searches in
which the particular data unit has been involved to the
total number of searches. As can be seen from Figure 10

Number of vertexs (data units)
1E+05

1E+04
1E+03

18402

1E+01 8 ; 2
? %‘ SO0 M* Vertexs Degree
1E+00 “——
0 50 100 150 200 250
4+ m=1 m=2 AMm=5 x m=10 * m=20

Fig. 6. Vertex degree distribution

and /1, the maximum value of the data unit load is inde-
pendent of the structure size and the fraction of load for
a particular data unit has exponential dependence on the
vertex degree (number of links to other data units). This
indicates that additional links increase the diversity of
search paths, thereby lowering the load on the data units
with larger number of links, all of which helps to avoid
bottleneck problems.

Max vertexs degree

500 °
)
400 PY
°
300 °
° * *
200 © * ¥
* * X
100 x X x X
A A A A A 4
. + » L S 4 L R
1E+03 1E+04 1E+05 1E+06
Number of data units in structure
4 m=1 m=2 AMm=5 x m=10 % m=20 o m=40

Fig. 7. Maximum vertex degree
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Max vertexs degree

X X
4 m
m k K

Fig. 8. Maximum vertex degree from parameter m
for 1 million, 100K and 1K data units in structure

The dependence of the maximum fraction load on the
parameter m is plotted in Figure 9. The study of vertex
degrees is presented in Figure 6, 7 and §. It is easily seen
that the maximum vertex degree has a logarithmic de-
pendence on the structure size (Figure §) and has a linear
dependence on the parameter m. Figure 6 shows that the
distribution of vertex degrees follows exponential law.

Fraction of max load
r m
1.00E-+01 g 2 4 8 ® 64

5,00E-01
2,50E-01
1,25E-01 ~

6,25E-02 L

3,13E-02

Fig. 9. Fraction of Max Load from parameter m
for 100K data units in structure

Fraction of max load

1E+00 | 50 100 150 200 250
Vertexs degree
1E-01
%
1E-02 *
1E-03
1E-04
1E-05
4+ m=1 m=2 Am=5 x m=10 * m=20

Fig. 10. Data unit load vs the number
of links for 100K data units in the structure

We have also investigated the stability property of the
structure, i.e. its ability to work in case of node removal.
Figure 12 shows the average percentage of the number
of nodes which should be removed (randomly with uni-
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form distribution) to split the network into two compo-
nents of connectivity. The average percent of removed
data units follows the power law from the total number
of data units in the structure. The value of the exponent
in this power law also obeys the power law with the ex-
ponent equal to -1.24 empirically (see Figure 13). There-
fore, we observe a relation ’7r~ ne™™, where ¢ is some
constant ~ 1.7 and r is the expected number of removed
data units for which the network is split.

Max fraction of data unit load
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.
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Fig. 71. Maximum data unit load
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Fig. 12. The average percentage of how many nodes should
be removed randomly with uniform distribution to split a network
into two components of connectivity
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Fig. 13. The value of the exponent in the law of dependency
on the number of removed data units from the structure size
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Conclusion

In this paper, we have introduced a variant of Metrized
Small World data structure which allows exact search-
ing for data units by a single unique string attribute.
We have described data insertion and data search al-
gorithms and have demonstrated that the structure has

4 an incremental data unit insertion algorithm modi-
fies only a small amount of data units;

4 the short paths for the greedy search algorithm are
formed without explicitly maintaining any particular
distribution of the length of links;

4 physical allocation of data units is independent of
data content and search functionality;

We have provided experimental data that demonstrates

the

ture. Our contributions can be summarized as follows:
4 overlay structure on the data unit level with any

number of entry points providing 0(

C

4 the structure is independent of data distribution;

10.

12.

13.

14.

16.

17
18.

O(ﬁﬂ?) search complexity, where empirically a ~ 0.11.

a

4 dynamic insertion of new network nodes does not
need a relocation of data units on existing nodes;
4 search paths are distributed in a way that avoids over-

scalability and decentralization properties of the struc- T )
loading single data units.
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AHHOTALUA

JI1s1 COBpeMEHHOM KOMITBIOTEPHOM CHUCTeMBI BO3MOXHOCTb MACIITaGUpPOBAThCS SIBISETCS HEOOXOTMMBIM
Oou3Hec-TpeboBaHueM. PacrpeneeHHbIE CUCTEMBI SIBHO IEMOHCTPUPYIOT 3TO CBOICTBO, KAaK U CIIOCOOHOCTH JIETKO
006pabaThIBaTh CBEPXOOJIbIINE 00beMBI JaHHBIX. MHOTHE CUCTEMEI C paclpeie/IcHHOM apXUTEKTYPOii UMEIOT B OCHOBE
pacnpeneneHHyto xam-taonuny (distributed hash table, DHT), kotopas ncnosb3yercsl B KaueCcTBe AOMOTHUTEIbHON
JIOTMYECKOI CeTH, 00bEINHSIONIE MHOXECTBO PaCIIpele/IeHHBIX CEPBEPOB. DTa JIOTMYECKAsI CETh UCIIOJIb3YETCS ISk
TTOMCKa Y3JI0B M pacTpene/ieHus 3a1ad MexXny HUMH. [JTaBHOe MPenMyIIEeCTBO TAKOTO ITOIX0Ia — OTCYTCTBME KaKOTO-
MO0 LIEHTPAJILHOTO 3JIEMEHTA UJIU y3j1a, KOTOPhIi 001agan 06l MHGOpMaleit o CTpyKType Beeii cetu. [Touck y3i10B
B CETH IIPOMCXOOUT IyTEM II€peIadr IMOMCKOBOIO COOOIIEHHMSI OT OTHOIO y3ja K Apyromy. HecMmorps Ha To, 4TO
KaKIBI y3eIT «3HAaeT» TOJbKO HEOOJIBIIIOE YUCIIO IPYTHX Y3JI0B, CETh OPraHM30BaHHA TAKMM 00pa30oM, UTO MpoLeaypa
IOMCKa 3aTparuBaet JorapuMuyecKoe Y1ciIo Y3JI0B.

CyliecTByeT HecKOJIbKO peanusanuii KoHueniuu DHT, KoTopble periaMeHTUPYIOT, KAKMM 00pa3oM JIOTUYecKast
CETh CTPOUTCS U TIOIepXKUBaeTcs. B 310l paboTe MbI IeMOHCTPUPYEM, KaK TaKast CETh MOXXET OBITh CKOHCTPYMPOBaHa
OYEHb ITPOCTHIM CIIOCOOOM, C MPUMEHEHUEM (C HEOONbIIMMU U3MEHEHUSIMU ) HEAABHO OIYyOJIMKOBAaHHOTO aJiropuT™Ma
MeTpu30BaHHOTO TecHoro mupa (Metrized Small World) mst ciryyas omHOMEPHOTO METPUUYECKOTO IMpOoCcTpaHCcTBa. B
paboTe MBI TPUBOIVM TEOPETUYECKUI aHAN3 TSI CITydasi paBHOMEPHOTO pacipeneeHusT TaHHbBIX U OMITUPUUYECKUIA
aHajau3 Ui IPpYyTux pacnpeneieHuil. [JaBHbBIM MPeuMyIIeCTBOM MPEIIOKEHHOTO ajlropuTMa Mepen aHaJloraMu
SIBJISIETCSI €TO YCTOMUMBOCTD K PA3IMYHBIM paclpeIeieHUsIM TaHHBIX U OTCYTCTBUE HEOOXOMUMOCTH TIOAICPKAHUS
pacripenesieHUs IJIMH CCBUIOK, ONPEeICHHOTO SIBHBIM 06pa3oM.

Takxke B paboTe onuchIBaeTCs, KAKUM 00pa3oM MOXKHO TOJTHOCTBIO OTACIUTD (PU3UYECKOE pa3MellleHUe JaHHbIX
OT MOKMCKOBOI (DYHKIIMOHATBHOCTU. DTO pas3ieeHre BAXHO, HAIIPUMED, IS IIOCTPOEHUS [I00ATBHBIX XPaHMJIHILL
TIaHHBIX, JAHHBIMY KOTOPBIX BJIAJCIOT HECKOIBKO CTOPOH, TPUYEM KaxKIasi CTOPOHA 3aMHTEPECOBaHa B TOM, YTOOBI
MMETh TMOJIHBI KOHTPOJb Haj (PU3MYECKUM pa3MellleHMeM U JOCTYyNy K CBOMM JaHHbIM. B omimmume ot DHT,
nmo0aBlIeHIE HOBBIX JAaHHBIX HE TPEOYyeT UX IlepeMEIeHIE Ha APYTHe Y3JIbL.

KiioueBbie ciioBa: MOMCK OJIMKAMIIETO cocea, METPHUYECKOE MPOCTPAHCTBO, paclpeae/ieHHbIE BHIUNCIEHUSI,
MHTEpHET-TEXHOIOTHUS U TIPUIOXKEHHUS, CTPYKTYpa JaHHBIX, AITOPUTM.

IMutuposanue: Ponomarenko A.A., Malkov Yu.A., Logvinov A.A., Krylov V.V. An overlay network for distributed exact
and range search in one-dimensional space // Business Informatics. 2016. No. 1 (35). P. 26—36.
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