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Abstract

The ability to scale is a desirable business requirement for computer systems. Distributed systems clearly 

demonstrate this ability and might to process very large volumes of data. Many systems with distributed 

architecture are based on the distributed hash table (DHT), which manages a set of distributed network 

nodes connected not only by a physical channel, but also by an additional overlay network. This overlay 

network is used for searching nodes and for distributing tasks among them. The main feature of this approach 

is that there is no central element or node which knows the global topology of the network. Nodes in the 

network are searched by passing a query message from one node to another. Despite that, every node has 

knowledge only about a small number of other nodes, and the network is organized in such a way that search 

involves a logarithmical number of nodes. 

There are several DHT implementations which specify how to construct and how to support the structure 

of the network. In this paper, we demonstrate the way in which such a network can be constructed much 

simpler by applying the sight modifi cation of the recently published Metrized Small World algorithm to the 

case of one dimension. We provide a theoretical analysis for the case of uniform distribution and empirical 

analysis for other distributions. The main advantage of the proposed algorithm is that it is immutable to data 

distribution and does not need to support any particular distribution of the length.

In addition, we show how to separate completely the concept of network location of data from the search 

functionality. This separation is important, for instance, for building global storages where data is owned 

by multiple parties and each party is interested in keeping control over the aspects of physical storage and 

access to the data it owns. So in contrast to DHT, insertion of new data does not require relocation to an 

existing node.
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Introduction

T
he scalability of a computer system is its ability 

to handle a growing amount of work [4]. It can 

also be referred to as the capability of a system 

to increase its performance under an increasing load. 

An analogous meaning is implied when the word “scal-

ability” is used in an economic context, where scalabil-

ity of a company implies that the underlying business 

model offers the potential for economic growth within 

the company. The concept of scalability is desirable in 

technology as well as in the business setting.

Data storage is a central part of any computer system. 

The scalability of any computer system strongly depends 

on the ability to scale its data storage. Traditionally, in 

most cases developers use relational database manage-

ment systems (RDBMS) as a data storage. Unfortunate-

ly, scalability of RDBMS has inherent limitations [7].  

The reason is that to support transactions and consist-

ency, RDBMS need a central coordination point such as 

a transaction manager, which becomes a bottleneck with 

a growing number of servers on which RDBMS are de-

ployed. Moreover, most RDBMS have an architecture 

in which servers have to share data with each other and 

therefore have to be synchronized, and this is a difficult 

task for a large number of servers. 

To overcome the scalability problems, it was decided 

to sacrifice some part of functionality for a better per-

formance [5]. Thus NoSQL databases appeared. The 

most important class of “NoSQL” databases is the key-

value stores. Such systems mainly support two opera-

tions: retrieving and storing data by a given key. Many 

popular internet services are based on key-value stor-

ages. For example, the messaging system of Facebook 

and store of dashboard messages of SoundCloud both 

use Apache Cassandra; many products of Google such 

as Gmail, YouTube, Google Maps are based on BigTa-

ble, which is also a key-value store. 

One of the possible ways to implement scalable key-

value storage is to use a distributed hash-table (DHT). 

The distributed hash table is a class of systems which al-

lows you to store and to search data by key in a set of net-

work nodes [17]. A particular implementation of DHT is 

a protocol which specifies how nodes communicate and 

how they form an overlay network. It is important that 

every node doesn’t know a full topology of the network. 

Instead, every node stores only a small amount of infor-

mation about the network, which in turn is stored in a 

routing table. Every node has its own key – ID, which 

typically is a hash value, calculated from its IP address. 

The data with some key k is placed on the node which 

ID is closer to k than ids of other nodes in terms of some 

distance function d. The search is performed using a 

greedy algorithm by passing query message from one 

node to another, based on the list of nodes stored at eve-

ry node in the routing table. Different DHT implemen-

tations use different distance functions. For instance, it 

can be a simple difference between two numbers x and у 

d(x, y) = (x – y)mod n [16] or it can be an XOR-metric 

defined as d (x, y) = x  y) [14]. 

The main advantage of all DHT implementations is 

that the expected number of nodes that a query mes-

sage should pass before it reaches the destination node 

is log(n). Here n is the total number of nodes in the net-

work. Moreover the maximum size of a routing table at 

any node is also proportional to log(n). These two prop-

erties together make DHT scalable. So the insertion of 

new nodes adds a very small overhead to the whole per-

formance of the system. 

The secret of these two properties lies in the structure 

of the routing table that is supported at every node. The 

main idea of all implementations of DHT is to maintain 

the routing tables in such a way that the i-th record in the 

routing table (link) of a particular node with id A points 

to the node with id B such that the distance from A to 

B belongs to the interval . This gives 

what in turns corresponds to the power law probability 

distribution of links length . When a new node is 

being inserted, DHT explicitly forms the routing table 

of the new node and updates the routing tables of the ex-

isting nodes according to this distribution. Together, all 

nodes with their routing tables form an overlay network 

which can be represented by graph G(V, E), where the 

set of vertices V is a set of network nodes and E is a set of 

edges corresponding to the records in the routing tables. 

So any particular implementation specifies how to build 

graph G and how to support it. 

As previously mentioned, all DHT implementations 

form i-th record in the routing table for node A explicitly 

by finding node B such that  in order to 

build a graph where the greedy walk algorithm can find a 

closest node to a given key with log(n) steps. 

In this paper we describe an algorithm which con-

structs a graph with similar navigation properties more 

naturally and more simply without an explicit support 

of a particular distribution of the links length. We apply 

our approximate algorithm suitable for a general met-

ric space [12, 13] with a slight modification of the in-

sertion algorithm to the exact search in the one-dimen-

sional case. Unfortunately, the theoretical analysis of the 

search algorithm for a general case of Metrized Small 
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World is still absent. In this paper in section 4 we provide 

such analysis for the one-dimensional case. In the sec-

tion 5, we give an empirical study of degree distribution, 

independence from data distribution, stability analysis 

and dependency of the search algorithm complexity on 

its parameters.  

Note that previously the algorithm for the case of one 

dimension was mentioned and used as a basic algorithm 

for building a multi-attribute data structure in the paper 

[11]. This paper wrongly refers to the paper with the title 

“Single-attribute distributed Metrized Small World data 

structure” where this algorithm should be described in 

detail; however this paper by mistake was not published. 

In the presented paper we want to fill this gap. For con-

sistency purposes. We provide this algorithm in section 2. 

We describe the insertion and search algorithms in detail 

with the complex empirical study and theoretical analysis.

We also suggest how to completely separate the con-

cept of network location of the data from the search func-

tionality. This separation is important, for instance, for 

building global distributed storages where data is owned 

by multiple parties and each party is interested in keeping 

control over the aspects of physical storage and access to 

the data it owns. So in contrast to DHT, insertion of new 

data does not require relocation of the existing node. In 

this way, the proposed overlay network with the search and 

insertion algorithm can be considered as a data structure 

built onto a data set.

The rest of the paper is structured as follows. Section 1 

describes the Metrized Small World overlay data structure 

and its mapping to the network node collection. Section 2 

specifies the data insertion algorithm. Section 3 describes 

the data search algorithms. In section 4 we prove that the 

search algorithm has O(log n) complexity. Section 5 pro-

vides the experimental data and gives an analysis of the 

properties of the proposed structure. Finally, we summa-

rize our contributions in the Conclusion.

1. One-dimensional
Metrized Small World network

The distributed Metrized Small World (MSW) struc-

ture consists of a number of fully interconnected network 

nodes (so that each network node can communicate di-

rectly with another node). Each node contains a number 

of data units. Both nodes and data units have identifiers 

unique in the context of the whole structure. Node identi-

fiers are resolved to network addresses (e.g. DN to IP) by 

an external system (such as DNS). A data unit identifier 

contains the identifier of a node on which the unit is al-

located, thereby allowing instant identification of a net-

work node containing the data unit. This makes it possible 

to create an overlay structure on data unit level, which is 

inherently mapped to the physical network nodes. Each 

data unit A stores a mutable set N(A) of identifiers of other 

data units, which are the links that constitute the over-

lay network. The overlay network can be considered as a 

graph G(V, E), where the set V corresponds to the set of 

all data units and the set E contains an edge (A, B) if data 

unit A has a link to data unit B.

All links are bidirectional, i.e. each data unit is linked 

with data units linked with it. Nodes are not directly 

aware of each other; identifiers of other nodes can only 

be obtained from the links to data units allocated on 

those nodes. 

An illustration of the structure is given on Figure 1. The 

structure is allocated on three network nodes identified by 

unique URL addresses. Data units are allocated on these 

nodes and also have unique URL addresses which are 

sub-URLs of the nodes. The overlay structure is built on 

the data units; the nodes do not have direct links to each 

other. The algorithms of data unit insertion and search op-

erate solely on the overlay structure formed by data units, 

and links between them are completely agnostic to the 

physical node collection supporting the structure (data 

unit identifiers are treated as atomic by the algorithms). 

The choice of a node to allocate a new data unit or the de-

cision to add a new node are completely independent of 

the data unit insertion algorithm which is executed after 

the new data unit is allocated. The introduction of a new 

node does not affect the existing overlay structure or the 

distribution of data units between nodes; it merely pro-

vides new allocation space and processing power for in-

sertion and search algorithms. 

http: //a http: //b

http: //c

http: /a/1
http: /b/2

http: /b/3

http: /b/4

http: /c/4

http: /c/6

http: /c/5
http: /c/3

http: /c/2

http: /c/1

http: /a/5

http: /a/2
http: /a/4

http: /a/3
http: /b/1

Fig. 1. An overlay network structure constructed on a set of data units 
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The overlay structure is accessed in a locally iterative 

manner, starting from an arbitrary known data unit (en-

try point) and following the links contained in the vis-

ited data units. To find a relevant data unit, one must 

choose an entry point and navigate through the struc-

ture, choosing a link at each step. 

To make this process efficient, two requirements must 

be met:

1. There should be a relatively short path between the 

entry point and the target data unit. Since neither the 

entry point nor the target data unit are known before-

hand, a short path must exist between any pair of data 

units in the structure; 

2. A criterion must exist which would allow us to de-

cide which link at each step will bring the search process 

closer to the result. It is also desirable that the gradient of 

the proximity criterion corresponds to the shortest path 

to the result in the structure, avoiding false local mini-

mums when possible.

To address the first requirement, we have developed a 

data unit insertion algorithm that incrementally produc-

es a structure with small-world properties. The small-

world graphs [1, 2, 19] have the essential property that 

they have a short path between any two vertices while 

most vertices are not neighbors of each other. 

To address the second requirement, a data unit con-

tains searchable information and non-searchable in-

formation. As a model of searchable information in 

this paper, we consider the set of objects U that can be 

bijectionally mapped to the unit interval of real num-

bers. For example, U can be a set of all possible strings 

, where s
i
 is the index of a symbol in the al-

phabet B. If we define a mapping,

 . 

For the purposes of the description of algorithms, 

we will denote as C(D
i 
) a mapped value of the search-

able information of the data unit D
i 
. We used a simple 

metric M between data units w hich is calculated as 

. This metric is used both by 

the insertion and search algorithms. Such a simple mod-

el of the searchable information allows us to make the 

search exact, since there is a natural linear order on the 

set of real numbers. This order is related to the metric 

M. Based on the linear order, the insertion algorithm has 

an ability to find the exact Voronoi’s neighbors for every 

data unit. That is the main advantage of this model in 

contrast with an approximate search in a general metric 

space [10, 12, 13], where it is hard to find the Voronoi’s 

neighbors exactly.

However, this approach is useful for the key-value stor-

ages and systems like CAS (Content Addressable Storage) 

[18] where a content-derived location-agnostic identifier 

of the data object, e.g. hash-code, is transformed into a 

content-agnostic location identifier, e.g. network or disk 

address, by the use of which the data object is retrieved. In 

terms of the MSW structure, the content-derived iden-

tifier would constitute the searchable information of the 

data unit and the content would be the non-searchable in-

formation. As a result of the search process, the content-

derived identifier will be transformed into the identifier of 

the data unit which stores the content. 

Other comparable solutions are the distributed hash 

table (DHT) [3] systems such as Chord [16]. These sys-

tems use a consistent hashing approach [8] to decide 

which network node will store the data unit. Insertion of 

a new network node requires relocation of K/n number 

of data units on average where K is the total number of 

data units and n is the number of nodes. In the MSW 

system, by contrast, insertion of a new node does not 

affect existing nodes because allocation of data units is 

completely irrelevant to the search and insertion algo-

rithms. The new node becomes involved in the structure 

when a data unit allocated on the new node is added to 

the MSW structure using an entry point on one of the 

existing nodes. Another difference from the DHT sys-

tems is that MSW creates an overlay network on the data 

unit level while the overlay network of DHT systems like 

Chord is built on the node level.

A detailed description of the technological aspects of 

a scalable database system based on the MSW structure 

is presented in [9]. 

2. Data insertion algorithm

The purpose of the data unit insertion algorithm is 

to connect a newly allocated data unit to the structure 

by populating its list of links and correspondingly ex-

tending link lists of the data units chosen to be con-

nected with the new data unit so that the greedy walk 

algorithm can find any data unit starting from any data 

unit. When there is an ordering relationship R related 

to the distance metric (for example the natural order of 

rational numbers), we can ensure the greedy search is 

guaranteed by connecting each data unit with its direct 

predecessor  and direct successor D
succ

 — in contrast 

to an approximate search for a general metric space. In 

order to make the search algorithm faster, we addition-

ally connect a new data unit with other m closest data 

units and do not remove these links during evolution of 

the structure. 
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The pseudo code of the algorithm is presented below. 

Insertion_with_Order 
Input: D

new
 – new data unit; D

ep 
– entry point data 

unit; m – parameter (small natural number).

1. Let  = D
ep

.

2. For each D    N(D
cur

) calculate M
i
 = M (D

i 
, D

new 
).

3. If min (M
i
 < M (D

cur 
, D

new 
) let  = D

i
 for which 

M
i
 = min (M

i
) and go to step 2.

4. If C(D
cur 

) < C(D
new 

) let = D
cur

 and let D
succ

 be the di-

rect successor of D
new

 chosen from the neighbors of D
cur

.

5. If C(D
cur 

) > C(D
new 

) let D
succ

 = D
cur

 and let  be the 

direct predecessor of D
new

 chosen from the neighbors of 

.

6. Connect D
new

 with  and D
succ

 if they exist.

7. Repeat m times:

7.1. If  exists, let  be the direct predecessor of 

 chosen from its neighbors.

7.2. If D
succ

 exists, let  be the direct successor of 

D
succ

 chosen from its neighbors.

7.3. If none of  and  exist then break.

7.4. If only  exists or  

connect D
new

 and , and let D
pre

 =  .

7.5. If only  exists or  

connect D
new

 and  , and let D
succ

 = 
 
.

At each iteration, the algorithm obtains the neigh-

bors of the current data unit  closest to D
new 

and 

calculates the distance M
i
 to each of them. After that, 

the algorithm updates  and makes the next itera-

tion. So, we use a kind of greedy search algorithm to 

find the data unit closest to the new data unit (after all 

iterations the closest to D
new

 data unit will be in ). 

We find out whether  precedes or follows D
new 

 and 

connect the new data unit with its direct predecessor 

 and direct successor D
succ 

. Finally, we connect the 

new data unit with m closest existing data units from 

the right (succeeding data unit) and left (preceding 

data unit) side of it.

3. Search algorithm

The greedy search algorithm finds a data unit with a 

string closest to a given string S
q
 starting from the entry 

point data unit D
ep 

. If there is a data unit with a string 

identical to S
q
 present in the structure, the greedy algo-

rithm will return this data unit. For brevity, we will treat 

each data unit as if it were the same entity as the search-

able string which it contains.

Greedy_Search
Input: S

q 
– key; D

ep 
– entry point data unit. 

Return: data unit which is closest to S
q
.

1. Let  = D
ep

.

2. For each D    N(D
cur

) calculate M
i
 = M (D

i 
, S

q
).

3. If min (M
i
 > M (D

cur 
, S

q 
), then return .

4. Let  = D
i
 for which M

i
 = min (M

i 
) and go to step 2.

The greedy search algorithm described above relies 

on the fact that each data unit is always connected by 

the insertion algorithm with its direct predecessor and 

successor in the order defined by natural order of values 

C(D
i 
). This ensures absence of false local minimums in 

the structure. In section 4, we will show that the com-

plexity of this search algorithm grows logarithmically 

with the number of data units in the structure. 

Since all data units are ordered, it is possible to define 

an operation that retrieves all data units from the given 

interval. We will denote the direct predecessor of ele-

ment x as D
pre

(x) and the direct successor of x as D
suc

(x). 

The pseudo code of range search is presented below.

Range_ Search

Input: L
q
 – left bound; R

q
 – right bound; D

ep
  – entry 

point data unit. 

Return: the set of data units from interval [L
q 
, R

q
 ].

1. Let 

2. 

3. While    L
q
 do T = T   and let  = D

pre 
(D

cur 
);

4. Let .

3. While D
cur 

  R
q 
 do T = T  D

cur
 and let  = D

suc 
(D

cur 
);

4. Return T.

The idea of the range search algorithm is very simple. 

We start from the center of the interval, go left until we 

reach the left bound and collect all data units to the set 

T. After that, we do the same in the opposite direction 

until we reach the right bound and return the set T as a 

result. 

4. Theoretical analysis 
of the search algorithm

Theorem. The algorithm Greedy_Search has O(log n) 

complexity in the structure formed by the construction 

algorithm Insertion_with_Order.

Proof. Let us assume that the images C(D
i 
) are uni-

formly distributed in the segment [0, 1]. The goal is to 

demonstrate that each time the size of the structure 

doubles, the average number of steps required to reach 
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any data unit from any other data unit increases by an 

amount bounded by a constant, thereby producing loga-

rithmic search complexity growth. First, we consider the 

situation when we have the set of N first data units in 

the structure. We call this set the first generation. Let us 

assume that we can reach any data unit from any oth-

er data unit in at most P steps. The probability density 

of the metric distance L between adjacent (in terms of 

metric) data units falls exponentially, so if we ignore the 

intervals between adjacent data units R times larger than 

average (i.e. larger than R/N) we omit only exponen-

tially small number of cases. We thereby ignore the rare 

cases of very large gaps between adjacent data units in 

the first generation. 

Next, we add N of the second generation data units, 

i.e. double the number of data units. Consider the larg-

est interval between adjacent data units in first genera-

tion. The number of second generation data units k fall-

ing into the interval conforms to the Poisson distribution

 for large N. 

Since the length of the interval is R/N we have the ex-

pected value of the number  of second generation data 

units falling into the interval  and hence

. 

If we assume that  we will be wrong only in a 

small number of cases if M is large enough. Now we will 

determine the upper bound U on the number of steps 

required to reach any data unit from any other data unit 

after the insertion of the second generation data units. 

Consider the worst case when both initial and target data 

units belong to the second generation. We are taking into 

account only the links between adjacent first generation 

data units, adjacent second generation data units and 

adjacent first and second generation data units, which 

are a subset of all links in the structure, which further 

increases U. The links between adjacent first generation 

data units are longer in terms of metric than the links be-

tween adjacent data units in the second generation. 

Hence, the former links are preferable to the latter in 

reaching the target data unit in the smallest number of 

steps. At most, M steps are required to reach the clos-

est first generation data unit from the initial data unit, 

at most, P steps are required to reach the first genera-

tion data unit closest to the target data unit, and again, at 

most, M steps are required to reach the target data unit 

from the closest first generation data unit.

Therefore, at most P + 2 M steps are required to reach 

any data unit from any other data unit after the insertion 

of second generation data units. Thereby, we have shown 

that when the structure size is doubled, the number of 

search steps is only increased by the constant 2 M, which 

means that we have O(log n) search complexity where is 

the number of data units in the structure. 

5. Simulations 

We have implemented a single-attribute MSW struc-

ture. The simulations have been performed for different 

numbers of data units in the structure and for different 

values of parameter m of the insertion algorithm.

Figure 2 shows the average path length (number of 

steps) which the search algorithm needs to reach the 

data unit closest to the query. Networks with sizes in 

range from 1000 to 1000000 were generated by the In-

sertion_with_Order algorithm on the set of real numbers 

which has five different random distributions: uniform 

on the segment [0, 1], power law with power 0.5; nor-

mal distribution with mean 0.0 and standard deviation 

1.0; log-normal with mean 4.0 and standard deviation 

0.5; and points distributed normally with deviation 1.0 

around 10 centers {-10.0, -7.0, -5.0, 0.0, 1.0, 2.0, 10.0}. 

Fig. 2. Average path length for different distributions Fig. 3. Deviation of average path for different distributions

 Uniform       PowerLaw     Norm      LogNorm        10Centers  Uniform       PowerLaw     Norm      LogNorm        10Centers
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The deviations of the path length from the average value 

for the different distributions are shown in Figure 3.

As can been seen from Figure 2 and 3, the structure 

demonstrates clear logarithmic dependency from the 

structure size with very small deviation for all distribu-

tion types. Independence of different distributions was 

expected, since all algorithms of the MSW structure do 

not directly use the value of distance between data units 

and are based only on the relative order. Therefore, all 

remaining simulations have been performed on the sets 

of data units whose images have been uniformly distrib-

uted on the interval (0, 1).

Figure 4 and 5 show dependency of the path length 

on the parameter m. Figure 4 presents results for various 

Fig. 6. Vertex degree distribution

Fig. 4. Average path length of search algorithm

Fig. 7. Maximum vertex degree

Fig. 5. Dependency of path length for parameter m 
for fixed structure sizes 1K-1M

 m=1                   m=3                     m=6
 m=15                 m=36                   m=55

25

20

15
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5

0
1E+031E+03                     1E+04                           1E+05                           1E+06                    1E+04                           1E+05                           1E+06

Number of data units in structure

structure sizes and Figure 5 for six different fixed sizes: 

1 million, 500 thousand, 100 thousand, 50 thousand, 5 

thousand and 1 thousand data units. As can be seen from 

Figure 5, the dependence of the average path length on 

the parameter m is close to inverse logarithmic law.

In order to study how the network nodes, which 

are presented as data units, may be loaded during the 

search, we have measured how often the search algo-

rithm visits the particular data unit. The value of loading 

was calculated as a fraction of the number of searches in 

which the particular data unit has been involved to the 

total number of searches. As can be seen from Figure 10 

and 11, the maximum value of the data unit load is inde-

pendent of the structure size and the fraction of load for 

a particular data unit has exponential dependence on the 

vertex degree (number of links to other data units). This 

indicates that additional links increase the diversity of 

search paths, thereby lowering the load on the data units 

with larger number of links, all of which helps to avoid 

bottleneck problems.
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The dependence of the maximum fraction load on the 

parameter m is plotted in Figure 9 . The study of vertex 

degrees is presented in Figure 6, 7 and 8. It is easily seen 

that the maximum vertex degree has a logarithmic de-

pendence on the structure size (Figure 8) and has a linear 

dependence on the parameter m. Figure 6 shows that the 

distribution of vertex degrees follows exponential law.

We have also investigated the stability property of the 

structure, i.e. its ability to work in case of node removal. 

Figure 12 shows the average percentage of the number 

of nodes which should be removed (randomly with uni-
Fig. 13. The value of the exponent in the law of dependency 
on the number of removed data units from the structure size

Fig. 8. Maximum vertex degree from parameter m
for 1 million, 100K and 1K data units in structure
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form distribution) to split the network into two compo-

nents of connectivity. The average percent of removed 

data units follows the power law from the total number 

of data units in the structure. The value of the exponent 

in this power law also obeys the power law with the ex-

ponent equal to -1.24 empirically (see Figure 13). There-

fore, we observe a relation , where с is some 

constant  and r is the expected number of removed 

data units for which the network is split.
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Conclusion 

In this paper, we have introduced a variant of Metrized 

Small World data structure which allows exact search-

ing for data units by a single unique string attribute. 

We have described data insertion and data search al-

gorithms and have demonstrated that the structure has 

 search complexity, where empirically . 

We have provided experimental data that demonstrates 

the scalability and decentralization properties of the struc-

ture. Our contributions can be summarized as follows:

 overlay structure on the data unit level with any

number of entry points providing  search 

complexity using a simple greedy search algorithm;

 the structure is independent of data distribution;

 an incremental data unit insertion algorithm modi-

fies only a small amount of data units; 

 the short paths for the greedy search algorithm are 

formed without explicitly maintaining any particular 

distribution of the length of links; 

 physical allocation of data units is independent of 

data content and search functionality;  

 dynamic insertion of new network nodes does not 

need a relocation of data units on existing nodes;  

 search paths are distributed in a way that avoids over-

loading single data units.
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Аннотация

Для современной компьютерной системы возможность масштабироваться является необходимым 

бизнес-требованием. Распределенные системы явно демонстрируют это свойство, как и способность легко 

обрабатывать сверхбольшие объемы данных. Многие системы с распределенной архитектурой имеют в основе 

распределенную хэш-таблицу (distributed hash table, DHT), которая используется в качестве дополнительной 

логической сети, объединяющей множество распределенных серверов. Эта логическая сеть используется для 

поиска узлов и распределения задач между ними. Главное преимущество такого подхода – отсутствие какого-

либо центрального элемента или узла, который обладал бы информацией о структуре всей сети. Поиск узлов 

в сети происходит путем передачи поискового сообщения от одного узла к другому. Несмотря на то, что 

каждый узел «знает» только небольшое число других узлов, сеть организованна таким образом, что процедура 

поиска затрагивает логарифмическое число узлов. 

Существует несколько реализаций концепции DHT, которые регламентируют, каким образом логическая 

сеть строится и поддерживается. В этой работе мы демонстрируем, как такая сеть может быть сконструирована 

очень простым способом, с применением (с небольшими изменениями) недавно опубликованного алгоритма 

метризованного тесного мира (Metrized Small World) для случая одномерного метрического пространства. В 

работе мы приводим теоретический анализ для случая равномерного распределения данных и эмпирический 

анализ для других распределений. Главным преимуществом предложенного алгоритма перед аналогами 

является его устойчивость к различным распределениям данных и отсутствие необходимости поддержания 

распределения длин ссылок, определенного явным образом. 

Также в работе описывается, каким образом можно полностью отделить физическое размещение данных 

от поисковой функциональности. Это разделение важно, например, для построения глобальных хранилищ 

данных, данными которых владеют несколько сторон, причем каждая сторона заинтересована в том, чтобы 

иметь полный контроль над физическим размещением и доступу к своим данным. В отличие от DHT, 

добавление новых данных не требует их перемещение на другие узлы. 

Ключевые слова: поиск ближайшего соседа, метрическое пространство, распределенные вычисления, 
Интернет-технология и приложения, структура данных, алгоритм. 
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