
26
BUSINESS INFORMATICS No. 1(35) – 2016

An overlay network for distributed exact
and range search in one-dimensional space

Alexander A. Ponomarenko
Researcher, Laboratory of Algorithms and Technologies for Network Analysis
National Research University Higher School of Economics
Address: 136, Rodionova Street, Nizhny Novgorod, 603093, Russian Federation
E-mail: aponomarenko@hse.ru

Yury A. Malkov
Junior Research Fellow
The Institute of Applied Physics of the Russian Academy of Sciences
Address: 46, Ulyanova Street, Nizhny Novgorod, 603950, Russian Federation
E-mail: yurymalkov@mail.ru

Andrey A. Logvinov
Project Leader, MERA Labs LLC
Address: 192, Rodionova Street, Nizhny Novgorod, 603093, Russian Federation
E-mail: alogvinov@meralabs.com

Vladimir V. Krylov
Professor, Head of Big Data Laboratory
Nizhny Novgorod State Technical University
Address: 24 Minina Street, Nizhny Novgorod, 603950, Russian Federation
E-mail: vkrylov@heterarchica.com

Abstract

The ability to scale is a desirable business requirement for computer systems. Distributed systems clearly

demonstrate this ability and might to process very large volumes of data. Many systems with distributed

architecture are based on the distributed hash table (DHT), which manages a set of distributed network

nodes connected not only by a physical channel, but also by an additional overlay network. This overlay

network is used for searching nodes and for distributing tasks among them. The main feature of this approach

is that there is no central element or node which knows the global topology of the network. Nodes in the

network are searched by passing a query message from one node to another. Despite that, every node has

knowledge only about a small number of other nodes, and the network is organized in such a way that search

involves a logarithmical number of nodes.

There are several DHT implementations which specify how to construct and how to support the structure

of the network. In this paper, we demonstrate the way in which such a network can be constructed much

simpler by applying the sight modifi cation of the recently published Metrized Small World algorithm to the

case of one dimension. We provide a theoretical analysis for the case of uniform distribution and empirical

analysis for other distributions. The main advantage of the proposed algorithm is that it is immutable to data

distribution and does not need to support any particular distribution of the length.

In addition, we show how to separate completely the concept of network location of data from the search

functionality. This separation is important, for instance, for building global storages where data is owned

by multiple parties and each party is interested in keeping control over the aspects of physical storage and

access to the data it owns. So in contrast to DHT, insertion of new data does not require relocation to an

existing node.

Key words: nearest neighbor search, metric space, distributed computing, Internet technology and applications,
data structure, algorithm.

Citation: Ponomarenko A.A., Malkov Yu.A., Logvinov A.A., Krylov V.V. (2016) An overlay network for distributed
exact and range search in one-dimensional space. Business Informatics, no. 1 (35), pp. 26–36.
DOI: 10.17323/1998-0663.2016.1.26.36.

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

27
BUSINESS INFORMATICS No. 1(35) – 2016

Introduction

T
he scalability of a computer system is its ability

to handle a growing amount of work [4]. It can

also be referred to as the capability of a system

to increase its performance under an increasing load.

An analogous meaning is implied when the word “scal-

ability” is used in an economic context, where scalabil-

ity of a company implies that the underlying business

model offers the potential for economic growth within

the company. The concept of scalability is desirable in

technology as well as in the business setting.

Data storage is a central part of any computer system.

The scalability of any computer system strongly depends

on the ability to scale its data storage. Traditionally, in

most cases developers use relational database manage-

ment systems (RDBMS) as a data storage. Unfortunate-

ly, scalability of RDBMS has inherent limitations [7].

The reason is that to support transactions and consist-

ency, RDBMS need a central coordination point such as

a transaction manager, which becomes a bottleneck with

a growing number of servers on which RDBMS are de-

ployed. Moreover, most RDBMS have an architecture

in which servers have to share data with each other and

therefore have to be synchronized, and this is a difficult

task for a large number of servers.

To overcome the scalability problems, it was decided

to sacrifice some part of functionality for a better per-

formance [5]. Thus NoSQL databases appeared. The

most important class of “NoSQL” databases is the key-

value stores. Such systems mainly support two opera-

tions: retrieving and storing data by a given key. Many

popular internet services are based on key-value stor-

ages. For example, the messaging system of Facebook

and store of dashboard messages of SoundCloud both

use Apache Cassandra; many products of Google such

as Gmail, YouTube, Google Maps are based on BigTa-

ble, which is also a key-value store.

One of the possible ways to implement scalable key-

value storage is to use a distributed hash-table (DHT).

The distributed hash table is a class of systems which al-

lows you to store and to search data by key in a set of net-

work nodes [17]. A particular implementation of DHT is

a protocol which specifies how nodes communicate and

how they form an overlay network. It is important that

every node doesn’t know a full topology of the network.

Instead, every node stores only a small amount of infor-

mation about the network, which in turn is stored in a

routing table. Every node has its own key – ID, which

typically is a hash value, calculated from its IP address.

The data with some key k is placed on the node which

ID is closer to k than ids of other nodes in terms of some

distance function d. The search is performed using a

greedy algorithm by passing query message from one

node to another, based on the list of nodes stored at eve-

ry node in the routing table. Different DHT implemen-

tations use different distance functions. For instance, it

can be a simple difference between two numbers x and у

d(x, y) = (x – y)mod n [16] or it can be an XOR-metric

defined as d (x, y) = x y) [14].

The main advantage of all DHT implementations is

that the expected number of nodes that a query mes-

sage should pass before it reaches the destination node

is log(n). Here n is the total number of nodes in the net-

work. Moreover the maximum size of a routing table at

any node is also proportional to log(n). These two prop-

erties together make DHT scalable. So the insertion of

new nodes adds a very small overhead to the whole per-

formance of the system.

The secret of these two properties lies in the structure

of the routing table that is supported at every node. The

main idea of all implementations of DHT is to maintain

the routing tables in such a way that the i-th record in the

routing table (link) of a particular node with id A points

to the node with id B such that the distance from A to

B belongs to the interval . This gives

what in turns corresponds to the power law probability

distribution of links length . When a new node is

being inserted, DHT explicitly forms the routing table

of the new node and updates the routing tables of the ex-

isting nodes according to this distribution. Together, all

nodes with their routing tables form an overlay network

which can be represented by graph G(V, E), where the

set of vertices V is a set of network nodes and E is a set of

edges corresponding to the records in the routing tables.

So any particular implementation specifies how to build

graph G and how to support it.

As previously mentioned, all DHT implementations

form i-th record in the routing table for node A explicitly

by finding node B such that in order to

build a graph where the greedy walk algorithm can find a

closest node to a given key with log(n) steps.

In this paper we describe an algorithm which con-

structs a graph with similar navigation properties more

naturally and more simply without an explicit support

of a particular distribution of the links length. We apply

our approximate algorithm suitable for a general met-

ric space [12, 13] with a slight modification of the in-

sertion algorithm to the exact search in the one-dimen-

sional case. Unfortunately, the theoretical analysis of the

search algorithm for a general case of Metrized Small

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

28
BUSINESS INFORMATICS No. 1(35) – 2016

World is still absent. In this paper in section 4 we provide

such analysis for the one-dimensional case. In the sec-

tion 5, we give an empirical study of degree distribution,

independence from data distribution, stability analysis

and dependency of the search algorithm complexity on

its parameters.

Note that previously the algorithm for the case of one

dimension was mentioned and used as a basic algorithm

for building a multi-attribute data structure in the paper

[11]. This paper wrongly refers to the paper with the title

“Single-attribute distributed Metrized Small World data

structure” where this algorithm should be described in

detail; however this paper by mistake was not published.

In the presented paper we want to fill this gap. For con-

sistency purposes. We provide this algorithm in section 2.

We describe the insertion and search algorithms in detail

with the complex empirical study and theoretical analysis.

We also suggest how to completely separate the con-

cept of network location of the data from the search func-

tionality. This separation is important, for instance, for

building global distributed storages where data is owned

by multiple parties and each party is interested in keeping

control over the aspects of physical storage and access to

the data it owns. So in contrast to DHT, insertion of new

data does not require relocation of the existing node. In

this way, the proposed overlay network with the search and

insertion algorithm can be considered as a data structure

built onto a data set.

The rest of the paper is structured as follows. Section 1

describes the Metrized Small World overlay data structure

and its mapping to the network node collection. Section 2

specifies the data insertion algorithm. Section 3 describes

the data search algorithms. In section 4 we prove that the

search algorithm has O(log n) complexity. Section 5 pro-

vides the experimental data and gives an analysis of the

properties of the proposed structure. Finally, we summa-

rize our contributions in the Conclusion.

1. One-dimensional
Metrized Small World network

The distributed Metrized Small World (MSW) struc-

ture consists of a number of fully interconnected network

nodes (so that each network node can communicate di-

rectly with another node). Each node contains a number

of data units. Both nodes and data units have identifiers

unique in the context of the whole structure. Node identi-

fiers are resolved to network addresses (e.g. DN to IP) by

an external system (such as DNS). A data unit identifier

contains the identifier of a node on which the unit is al-

located, thereby allowing instant identification of a net-

work node containing the data unit. This makes it possible

to create an overlay structure on data unit level, which is

inherently mapped to the physical network nodes. Each

data unit A stores a mutable set N(A) of identifiers of other

data units, which are the links that constitute the over-

lay network. The overlay network can be considered as a

graph G(V, E), where the set V corresponds to the set of

all data units and the set E contains an edge (A, B) if data

unit A has a link to data unit B.

All links are bidirectional, i.e. each data unit is linked

with data units linked with it. Nodes are not directly

aware of each other; identifiers of other nodes can only

be obtained from the links to data units allocated on

those nodes.

An illustration of the structure is given on Figure 1. The

structure is allocated on three network nodes identified by

unique URL addresses. Data units are allocated on these

nodes and also have unique URL addresses which are

sub-URLs of the nodes. The overlay structure is built on

the data units; the nodes do not have direct links to each

other. The algorithms of data unit insertion and search op-

erate solely on the overlay structure formed by data units,

and links between them are completely agnostic to the

physical node collection supporting the structure (data

unit identifiers are treated as atomic by the algorithms).

The choice of a node to allocate a new data unit or the de-

cision to add a new node are completely independent of

the data unit insertion algorithm which is executed after

the new data unit is allocated. The introduction of a new

node does not affect the existing overlay structure or the

distribution of data units between nodes; it merely pro-

vides new allocation space and processing power for in-

sertion and search algorithms.

http: //a http: //b

http: //c

http: /a/1
http: /b/2

http: /b/3

http: /b/4

http: /c/4

http: /c/6

http: /c/5
http: /c/3

http: /c/2

http: /c/1

http: /a/5

http: /a/2
http: /a/4

http: /a/3
http: /b/1

Fig. 1. An overlay network structure constructed on a set of data units

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

29
BUSINESS INFORMATICS No. 1(35) – 2016

The overlay structure is accessed in a locally iterative

manner, starting from an arbitrary known data unit (en-

try point) and following the links contained in the vis-

ited data units. To find a relevant data unit, one must

choose an entry point and navigate through the struc-

ture, choosing a link at each step.

To make this process efficient, two requirements must

be met:

1. There should be a relatively short path between the

entry point and the target data unit. Since neither the

entry point nor the target data unit are known before-

hand, a short path must exist between any pair of data

units in the structure;

2. A criterion must exist which would allow us to de-

cide which link at each step will bring the search process

closer to the result. It is also desirable that the gradient of

the proximity criterion corresponds to the shortest path

to the result in the structure, avoiding false local mini-

mums when possible.

To address the first requirement, we have developed a

data unit insertion algorithm that incrementally produc-

es a structure with small-world properties. The small-

world graphs [1, 2, 19] have the essential property that

they have a short path between any two vertices while

most vertices are not neighbors of each other.

To address the second requirement, a data unit con-

tains searchable information and non-searchable in-

formation. As a model of searchable information in

this paper, we consider the set of objects U that can be

bijectionally mapped to the unit interval of real num-

bers. For example, U can be a set of all possible strings

, where s
i
 is the index of a symbol in the al-

phabet B. If we define a mapping,

 .

For the purposes of the description of algorithms,

we will denote as C(D
i
) a mapped value of the search-

able information of the data unit D
i
. We used a simple

metric M between data units w hich is calculated as

. This metric is used both by

the insertion and search algorithms. Such a simple mod-

el of the searchable information allows us to make the

search exact, since there is a natural linear order on the

set of real numbers. This order is related to the metric

M. Based on the linear order, the insertion algorithm has

an ability to find the exact Voronoi’s neighbors for every

data unit. That is the main advantage of this model in

contrast with an approximate search in a general metric

space [10, 12, 13], where it is hard to find the Voronoi’s

neighbors exactly.

However, this approach is useful for the key-value stor-

ages and systems like CAS (Content Addressable Storage)

[18] where a content-derived location-agnostic identifier

of the data object, e.g. hash-code, is transformed into a

content-agnostic location identifier, e.g. network or disk

address, by the use of which the data object is retrieved. In

terms of the MSW structure, the content-derived iden-

tifier would constitute the searchable information of the

data unit and the content would be the non-searchable in-

formation. As a result of the search process, the content-

derived identifier will be transformed into the identifier of

the data unit which stores the content.

Other comparable solutions are the distributed hash

table (DHT) [3] systems such as Chord [16]. These sys-

tems use a consistent hashing approach [8] to decide

which network node will store the data unit. Insertion of

a new network node requires relocation of K/n number

of data units on average where K is the total number of

data units and n is the number of nodes. In the MSW

system, by contrast, insertion of a new node does not

affect existing nodes because allocation of data units is

completely irrelevant to the search and insertion algo-

rithms. The new node becomes involved in the structure

when a data unit allocated on the new node is added to

the MSW structure using an entry point on one of the

existing nodes. Another difference from the DHT sys-

tems is that MSW creates an overlay network on the data

unit level while the overlay network of DHT systems like

Chord is built on the node level.

A detailed description of the technological aspects of

a scalable database system based on the MSW structure

is presented in [9].

2. Data insertion algorithm

The purpose of the data unit insertion algorithm is

to connect a newly allocated data unit to the structure

by populating its list of links and correspondingly ex-

tending link lists of the data units chosen to be con-

nected with the new data unit so that the greedy walk

algorithm can find any data unit starting from any data

unit. When there is an ordering relationship R related

to the distance metric (for example the natural order of

rational numbers), we can ensure the greedy search is

guaranteed by connecting each data unit with its direct

predecessor and direct successor D
succ

 — in contrast

to an approximate search for a general metric space. In

order to make the search algorithm faster, we addition-

ally connect a new data unit with other m closest data

units and do not remove these links during evolution of

the structure.

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

30
BUSINESS INFORMATICS No. 1(35) – 2016

The pseudo code of the algorithm is presented below.

Insertion_with_Order
Input: D

new
 – new data unit; D

ep
– entry point data

unit; m – parameter (small natural number).

1. Let = D
ep

.

2. For each D N(D
cur

) calculate M
i
 = M (D

i
, D

new
).

3. If min (M
i
 < M (D

cur
, D

new
) let = D

i
 for which

M
i
 = min (M

i
) and go to step 2.

4. If C(D
cur

) < C(D
new

) let = D
cur

 and let D
succ

 be the di-

rect successor of D
new

 chosen from the neighbors of D
cur

.

5. If C(D
cur

) > C(D
new

) let D
succ

 = D
cur

 and let be the

direct predecessor of D
new

 chosen from the neighbors of

.

6. Connect D
new

 with and D
succ

 if they exist.

7. Repeat m times:

7.1. If exists, let be the direct predecessor of

 chosen from its neighbors.

7.2. If D
succ

 exists, let be the direct successor of

D
succ

 chosen from its neighbors.

7.3. If none of and exist then break.

7.4. If only exists or

connect D
new

 and , and let D
pre

 = .

7.5. If only exists or

connect D
new

 and , and let D
succ

 =

.

At each iteration, the algorithm obtains the neigh-

bors of the current data unit closest to D
new

and

calculates the distance M
i
 to each of them. After that,

the algorithm updates and makes the next itera-

tion. So, we use a kind of greedy search algorithm to

find the data unit closest to the new data unit (after all

iterations the closest to D
new

 data unit will be in).

We find out whether precedes or follows D
new

 and

connect the new data unit with its direct predecessor

 and direct successor D
succ

. Finally, we connect the

new data unit with m closest existing data units from

the right (succeeding data unit) and left (preceding

data unit) side of it.

3. Search algorithm

The greedy search algorithm finds a data unit with a

string closest to a given string S
q
 starting from the entry

point data unit D
ep

. If there is a data unit with a string

identical to S
q
 present in the structure, the greedy algo-

rithm will return this data unit. For brevity, we will treat

each data unit as if it were the same entity as the search-

able string which it contains.

Greedy_Search
Input: S

q
– key; D

ep
– entry point data unit.

Return: data unit which is closest to S
q
.

1. Let = D
ep

.

2. For each D N(D
cur

) calculate M
i
 = M (D

i
, S

q
).

3. If min (M
i
 > M (D

cur
, S

q
), then return .

4. Let = D
i
 for which M

i
 = min (M

i
) and go to step 2.

The greedy search algorithm described above relies

on the fact that each data unit is always connected by

the insertion algorithm with its direct predecessor and

successor in the order defined by natural order of values

C(D
i
). This ensures absence of false local minimums in

the structure. In section 4, we will show that the com-

plexity of this search algorithm grows logarithmically

with the number of data units in the structure.

Since all data units are ordered, it is possible to define

an operation that retrieves all data units from the given

interval. We will denote the direct predecessor of ele-

ment x as D
pre

(x) and the direct successor of x as D
suc

(x).

The pseudo code of range search is presented below.

Range_ Search

Input: L
q
 – left bound; R

q
 – right bound; D

ep
 – entry

point data unit.

Return: the set of data units from interval [L
q
, R

q
].

1. Let

2.

3. While L
q
 do T = T and let = D

pre
(D

cur
);

4. Let .

3. While D
cur

 R
q
 do T = T D

cur
 and let = D

suc
(D

cur
);

4. Return T.

The idea of the range search algorithm is very simple.

We start from the center of the interval, go left until we

reach the left bound and collect all data units to the set

T. After that, we do the same in the opposite direction

until we reach the right bound and return the set T as a

result.

4. Theoretical analysis
of the search algorithm

Theorem. The algorithm Greedy_Search has O(log n)

complexity in the structure formed by the construction

algorithm Insertion_with_Order.

Proof. Let us assume that the images C(D
i
) are uni-

formly distributed in the segment [0, 1]. The goal is to

demonstrate that each time the size of the structure

doubles, the average number of steps required to reach

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

31
BUSINESS INFORMATICS No. 1(35) – 2016

any data unit from any other data unit increases by an

amount bounded by a constant, thereby producing loga-

rithmic search complexity growth. First, we consider the

situation when we have the set of N first data units in

the structure. We call this set the first generation. Let us

assume that we can reach any data unit from any oth-

er data unit in at most P steps. The probability density

of the metric distance L between adjacent (in terms of

metric) data units falls exponentially, so if we ignore the

intervals between adjacent data units R times larger than

average (i.e. larger than R/N) we omit only exponen-

tially small number of cases. We thereby ignore the rare

cases of very large gaps between adjacent data units in

the first generation.

Next, we add N of the second generation data units,

i.e. double the number of data units. Consider the larg-

est interval between adjacent data units in first genera-

tion. The number of second generation data units k fall-

ing into the interval conforms to the Poisson distribution

 for large N.

Since the length of the interval is R/N we have the ex-

pected value of the number of second generation data

units falling into the interval and hence

.

If we assume that we will be wrong only in a

small number of cases if M is large enough. Now we will

determine the upper bound U on the number of steps

required to reach any data unit from any other data unit

after the insertion of the second generation data units.

Consider the worst case when both initial and target data

units belong to the second generation. We are taking into

account only the links between adjacent first generation

data units, adjacent second generation data units and

adjacent first and second generation data units, which

are a subset of all links in the structure, which further

increases U. The links between adjacent first generation

data units are longer in terms of metric than the links be-

tween adjacent data units in the second generation.

Hence, the former links are preferable to the latter in

reaching the target data unit in the smallest number of

steps. At most, M steps are required to reach the clos-

est first generation data unit from the initial data unit,

at most, P steps are required to reach the first genera-

tion data unit closest to the target data unit, and again, at

most, M steps are required to reach the target data unit

from the closest first generation data unit.

Therefore, at most P + 2 M steps are required to reach

any data unit from any other data unit after the insertion

of second generation data units. Thereby, we have shown

that when the structure size is doubled, the number of

search steps is only increased by the constant 2 M, which

means that we have O(log n) search complexity where is

the number of data units in the structure.

5. Simulations

We have implemented a single-attribute MSW struc-

ture. The simulations have been performed for different

numbers of data units in the structure and for different

values of parameter m of the insertion algorithm.

Figure 2 shows the average path length (number of

steps) which the search algorithm needs to reach the

data unit closest to the query. Networks with sizes in

range from 1000 to 1000000 were generated by the In-

sertion_with_Order algorithm on the set of real numbers

which has five different random distributions: uniform

on the segment [0, 1], power law with power 0.5; nor-

mal distribution with mean 0.0 and standard deviation

1.0; log-normal with mean 4.0 and standard deviation

0.5; and points distributed normally with deviation 1.0

around 10 centers {-10.0, -7.0, -5.0, 0.0, 1.0, 2.0, 10.0}.

Fig. 2. Average path length for different distributions Fig. 3. Deviation of average path for different distributions

 Uniform PowerLaw Norm LogNorm 10Centers Uniform PowerLaw Norm LogNorm 10Centers

1,00E+03 1,00E+04 1,00E+05 1,00E+06

23

12

19

17

15

13

11

9
Number of data units in structure

0,04

0,03

0,02

0,01

0

-0,01

-0,02

-0,03

-0,04

 1 E+04 1E+05 1E+06 1 E+04 1E+05 1E+06

Number of data units in structure

Avg. path length Avg. path length deviation

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

32
BUSINESS INFORMATICS No. 1(35) – 2016

The deviations of the path length from the average value

for the different distributions are shown in Figure 3.

As can been seen from Figure 2 and 3, the structure

demonstrates clear logarithmic dependency from the

structure size with very small deviation for all distribu-

tion types. Independence of different distributions was

expected, since all algorithms of the MSW structure do

not directly use the value of distance between data units

and are based only on the relative order. Therefore, all

remaining simulations have been performed on the sets

of data units whose images have been uniformly distrib-

uted on the interval (0, 1).

Figure 4 and 5 show dependency of the path length

on the parameter m. Figure 4 presents results for various

Fig. 6. Vertex degree distribution

Fig. 4. Average path length of search algorithm

Fig. 7. Maximum vertex degree

Fig. 5. Dependency of path length for parameter m
for fixed structure sizes 1K-1M

 m=1 m=3 m=6
 m=15 m=36 m=55

25

20

15

10

5

0
1E+031E+03 1E+04 1E+05 1E+06 1E+04 1E+05 1E+06

Number of data units in structure

structure sizes and Figure 5 for six different fixed sizes:

1 million, 500 thousand, 100 thousand, 50 thousand, 5

thousand and 1 thousand data units. As can be seen from

Figure 5, the dependence of the average path length on

the parameter m is close to inverse logarithmic law.

In order to study how the network nodes, which

are presented as data units, may be loaded during the

search, we have measured how often the search algo-

rithm visits the particular data unit. The value of loading

was calculated as a fraction of the number of searches in

which the particular data unit has been involved to the

total number of searches. As can be seen from Figure 10

and 11, the maximum value of the data unit load is inde-

pendent of the structure size and the fraction of load for

a particular data unit has exponential dependence on the

vertex degree (number of links to other data units). This

indicates that additional links increase the diversity of

search paths, thereby lowering the load on the data units

with larger number of links, all of which helps to avoid

bottleneck problems.

m

23

21

19

17

15

13

11

9

7

5

 1m 100k 500k 50k 1k 5k

11 2 2 4 4 8 8 16 16 32 32 64 64

Vertexs Degree

 m=1 m=2 m=5 m=10 m=20

0 50 100 150 200 2500 50 100 150 200 250

1E+051E+05

1E+041E+04

1E+031E+03

1E+021E+02

1E+011E+01

1E+001E+00

 m=1 m=2 m=5 m=10 m=20 m=40

500

400

300

200

100

0

Number of data units in structure

1E+031E+03 1E+04 1E+05 1E+06 1E+04 1E+05 1E+06

Avg. path length

Avg. path length

Number of vertexs (data units)

Max vertexs degree

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

33
BUSINESS INFORMATICS No. 1(35) – 2016

The dependence of the maximum fraction load on the

parameter m is plotted in Figure 9 . The study of vertex

degrees is presented in Figure 6, 7 and 8. It is easily seen

that the maximum vertex degree has a logarithmic de-

pendence on the structure size (Figure 8) and has a linear

dependence on the parameter m. Figure 6 shows that the

distribution of vertex degrees follows exponential law.

We have also investigated the stability property of the

structure, i.e. its ability to work in case of node removal.

Figure 12 shows the average percentage of the number

of nodes which should be removed (randomly with uni-
Fig. 13. The value of the exponent in the law of dependency
on the number of removed data units from the structure size

Fig. 8. Maximum vertex degree from parameter m
for 1 million, 100K and 1K data units in structure

 1m 100k 1k

500

400

300

200

100

0 m
0 10 200 10 20 30 30 40 40

Fig. 9. Fraction of Max Load from parameter m
for 100K data units in structure

m
0 2 40 2 4 8 8 16 32 64 16 32 641,00E+01

5,00E-01

2,50E-01

1,25E-01

6,25E-02

3,13E-02

 m=1 m=2 m=5 m=10 m=20

0 50 100 150 200 2500 50 100 150 200 2501E+001E+00

1E-011E-01

1E-021E-02

1E-031E-03

1E-041E-04

1E-051E-05

Fig. 10. Data unit load vs the number
 of links for 100K data units in the structure

Exponent Value
m

4 84 8 16 32 64 16 32 641

0,1

0,01

Fig. 11. Maximum data unit load

 m = 1 m = 3 m = 6 m = 15 m = 36 m=55

Number of data units in structure

Max fraction of data unit load
0,6

0,5

0,4

0,3

0,2

0,1

0
1E+031E+03 1E+04 1E+05 1E+06 1E+04 1E+05 1E+06

Fig. 12. The average percentage of how many nodes should
be removed randomly with uniform distribution to split a network

into two components of connectivity

Percentage of removed data units

 m = 6 m = 12 m = 18 m = 24 m = 30 m=50

1E+031E+03 1E+04 1E+05 1E+04 1E+05

100

10

1

form distribution) to split the network into two compo-

nents of connectivity. The average percent of removed

data units follows the power law from the total number

of data units in the structure. The value of the exponent

in this power law also obeys the power law with the ex-

ponent equal to -1.24 empirically (see Figure 13). There-

fore, we observe a relation , where с is some

constant and r is the expected number of removed

data units for which the network is split.

Max vertexs degree

Fraction of max load

Fraction of max load

Vertexs degree

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

34
BUSINESS INFORMATICS No. 1(35) – 2016

Conclusion

In this paper, we have introduced a variant of Metrized

Small World data structure which allows exact search-

ing for data units by a single unique string attribute.

We have described data insertion and data search al-

gorithms and have demonstrated that the structure has

 search complexity, where empirically .

We have provided experimental data that demonstrates

the scalability and decentralization properties of the struc-

ture. Our contributions can be summarized as follows:

 overlay structure on the data unit level with any

number of entry points providing search

complexity using a simple greedy search algorithm;

 the structure is independent of data distribution;

 an incremental data unit insertion algorithm modi-

fies only a small amount of data units;

 the short paths for the greedy search algorithm are

formed without explicitly maintaining any particular

distribution of the length of links;

 physical allocation of data units is independent of

data content and search functionality;

 dynamic insertion of new network nodes does not

need a relocation of data units on existing nodes;

 search paths are distributed in a way that avoids over-

loading single data units.

Acknowledgments

This work was conducted in National Research Uni-

versity Higher School of Economics and supported by

RSF grant 14-41-00039.

References

1. Albert R., Barabasi A.L. (2002) Statistical mechanics of complex networks. Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97.

2. Amaral L.A.N., Scala A., Barthelemy M., Stanley H.E. (2000) Classes of small-world networks. Proceedings of the National Academy of

Sciences (USA), vol. 97 (21), pp. 11149–11152.

3. Balakrishnan H., Kaashoek M.F., Karger D., Morris R., Stoica I. (2003) Looking up data in P2P systems. Communications of the ACM,

vol. 46, no. 2, pp. 43–48.

4. Bondi A.B. (2000) Characteristics of scalability and their impact on performance. Proceedings of the 2nd International Workshop on Software

and Performance (WOSP 2000), 17-20 September 2000, Ottawa, Canada, pp. 195–203.

5. Cattell R. (2011) Scalable SQL and NoSQL data stores. ACM SIGMOD Record, vol. 39 (4), pp. 12–27.

6. Dean J., Ghemawat S. (2008) Mapreduce: Simplified data processing on large clusters. Communications of the ACM, vol. 51, no. 1,

pp. 107–113.

7. Harizopoulos S., Abadi D.J., Madden S., Stonebraker M. (2008) OLTP through the looking glass, and what we found there. Proceedings

of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), 9-12 June 2008, Vancouver, Canada, pp.

981–992.

8. Karger D., Lehman E., Leighton T., Panigrahy R., Levine M., Lewin D. (1997) Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the World Wide Web. Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM,

4-6 May 1997, El Paso, Texas, USA, pp. 654–663.

9. Krylov V., Logvinov A., Ponomarenko A., Ponomarev D. (2008) Active database architecture for XML documents. Proceedings of the 21st

International Conference on Computer Applications in Industry and Engineering (CAINE 2008), 12-14 November 2008, Honolulu, Hawaii, USA,

pp. 244–249.

10. Krylov V., Logvinov A., Ponomarenko A., Ponomarev D. (2008) Metrized small world properties data structure. Proceedings of the 17th

International Conference on Software Engineering and Data Engineering (SEDE 2008), 30 June - 2 July 2008, Los Angeles, California, USA,

pp. 203–208.

11. Logvinov A., Ponomarenko A., Krylov V., Malkov Y. (2010) Metrized small world approach for nearest neighbor search. Proceedings of the

2010 Spring/Summer Young Researchers’ Colloquium on Software Engineering (SYRCoSE 2010), 1-2 June 2010, Nizhny Novgorod, Russia, vol.

4, pp. 151–156.

12. Malkov Y., Ponomarenko A., Logvinov A., Krylov V. (2014) Approximate nearest neighbor algorithm based on navigable small world graphs.

Information Systems, no. 45, pp. 61–68.

13. Malkov Y., Ponomarenko A., Logvinov A., Krylov V. (2012) Scalable distributed algorithm for approximate nearest neighbor search problem

in high dimensional general metric spaces. Lecture Notes in Computer Sciene – Similarity Search and Applications, vol. 7404, pp. 132–147.

14. Maymounkov P., Mazieres D. (2002) Kademlia: A peer-to-peer information system based on the XOR metric. Peer-to-Peer Systems, vol.

2429, pp. 53–65.

15. Rabl T., Gomez-Villamor S., Sadoghi M., Muntes-Mulero V., Jacobsen H.A., Mankovskii S. (2012) Solving big data challenges for enter-

prise application performance management. Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 1724–1735.

16. Stoica I., Morris R., Karger D., Kaashoek M.F., Balakrishnan H. (2001) Chord: A scalable peer-to-peer lookup service for internet applica-

tions. ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp. 149–160.

17. Tarkoma S. (2010) Overlay networks: Toward information networking. Boca Raton, FL: CRC Press.

18. Tolia N., Kozuch M., Satyanarayanan M., Karp B., Bressoud T.C., Perrig A. (2003) Opportunistic use of content addressable storage for

distributed file systems. Proceedings of the 2003 USENIX Annual Technical Conference (USENIX 2003), General Track, 9-14 June 2003, San

Antonio, Texas, USA, vol. 3, pp. 127–140.

19. Watts D.J. (1999) Small worlds: The dynamic of networks between ordered and randomness. New Jersey: Princeton University Press.

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

35
БИЗНЕС-ИНФОРМАТИКА № 1(35) – 2016

Оверлейная сеть для распределенного точного
и интервального поиска в одномерном пространстве

А.А. Пономаренко
научный сотрудник, Лаборатория алгоритмов и технологий анализа сетевых структур
Национальный исследовательский университет «Высшая школа экономики»
Адрес: Российская Федерация, 603093, г. Нижний Новгород, ул. Родионова, 136
E-mail: aponomarenko@hse.ru

Ю.А. Мальков
младший научный сотрудник
Институт прикладной физики, Российская академия наук
Адрес: Российская Федерация, 603950, г. Нижний Новгород, ул. Ульянова, 46
E-mail: yurymalkov@mail.ru

А.А. Логвинов
руководитель проектов, ООО «МераЛабс»
Адрес: Российская Федерация, 603093, г. Нижний Новгород, ул. Родионова, 192
E-mail: alogvinov@meralabs.com

В.В. Крылов
доктор технических наук, профессор, заведующий лабораторией больших данных
Нижегородский государственный технический университет им. Р.Е.Алексеева
Адрес: Российская Федерация, 603950, г. Нижний Новгород, ул. Минина, 24
E-mail: vkrylov@heterarchica.com

Аннотация

Для современной компьютерной системы возможность масштабироваться является необходимым

бизнес-требованием. Распределенные системы явно демонстрируют это свойство, как и способность легко

обрабатывать сверхбольшие объемы данных. Многие системы с распределенной архитектурой имеют в основе

распределенную хэш-таблицу (distributed hash table, DHT), которая используется в качестве дополнительной

логической сети, объединяющей множество распределенных серверов. Эта логическая сеть используется для

поиска узлов и распределения задач между ними. Главное преимущество такого подхода – отсутствие какого-

либо центрального элемента или узла, который обладал бы информацией о структуре всей сети. Поиск узлов

в сети происходит путем передачи поискового сообщения от одного узла к другому. Несмотря на то, что

каждый узел «знает» только небольшое число других узлов, сеть организованна таким образом, что процедура

поиска затрагивает логарифмическое число узлов.

Существует несколько реализаций концепции DHT, которые регламентируют, каким образом логическая

сеть строится и поддерживается. В этой работе мы демонстрируем, как такая сеть может быть сконструирована

очень простым способом, с применением (с небольшими изменениями) недавно опубликованного алгоритма

метризованного тесного мира (Metrized Small World) для случая одномерного метрического пространства. В

работе мы приводим теоретический анализ для случая равномерного распределения данных и эмпирический

анализ для других распределений. Главным преимуществом предложенного алгоритма перед аналогами

является его устойчивость к различным распределениям данных и отсутствие необходимости поддержания

распределения длин ссылок, определенного явным образом.

Также в работе описывается, каким образом можно полностью отделить физическое размещение данных

от поисковой функциональности. Это разделение важно, например, для построения глобальных хранилищ

данных, данными которых владеют несколько сторон, причем каждая сторона заинтересована в том, чтобы

иметь полный контроль над физическим размещением и доступу к своим данным. В отличие от DHT,

добавление новых данных не требует их перемещение на другие узлы.

Ключевые слова: поиск ближайшего соседа, метрическое пространство, распределенные вычисления,
Интернет-технология и приложения, структура данных, алгоритм.

Цитирование: Ponomarenko A.A., Malkov Yu.A., Logvinov A.A., Krylov V.V. An overlay network for distributed exact
and range search in one-dimensional space // Business Informatics. 2016. No. 1 (35). P. 26–36.
DOI: 10.17323/1998-0663.2016.1.26.36.

АНАЛИЗ ДАННЫХ И ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ

36
БИЗНЕС-ИНФОРМАТИКА № 1(35) – 2016

Литература

1. Albert R., Barabasi A.L. Statistical mechanics of complex networks // Reviews of Modern Physics. 2002. Vol. 74. No. 1. P. 47–97.

2. Amaral L.A.N., Scala A., Barthelemy M., Stanley H.E. Classes of small-world networks // Proceedings of the National Academy

of Sciences (USA). 2000. Vol. 97 (21). P. 11149–11152.

3. Looking up data in P2P systems / H.Balakrishnan [et al.] // Communications of the ACM. 2003. Vol. 46. No. 2. P. 43–48.

4. Bondi A.B. Characteristics of scalability and their impact on performance // Proceedings of the 2nd International Workshop on Software

and Performance (WOSP 2000), 17-20 September 2000, Ottawa, Canada. 2000. P. 195–203.

5. Cattell R. Scalable SQL and NoSQL data stores // ACM SIGMOD Record. 2011. Vol. 39 (4). P. 12–27.

6. Dean J., Ghemawat S. Mapreduce: Simplified data processing on large clusters // Communications of the ACM. 2008. Vol. 51. No. 1.

P. 107–113.

7. Harizopoulos S., Abadi D.J., Madden S., Stonebraker M. OLTP through the looking glass, and what we found there // Proceedings of the

2008 ACM SIGMOD International Conference on Management of Data (SIGMOD 2008), 9-12 June 2008, Vancouver, Canada. 2008.

P. 981–992.

8. Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web / D.Karger [et al.] //

Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, 4-6 May 1997, El Paso, Texas, USA. 1997. P. 654–663.

9. Krylov V., Logvinov A., Ponomarenko A., Ponomarev D. Active database architecture for XML documents // Proceedings of the 21st In-

ternational Conference on Computer Applications in Industry and Engineering (CAINE 2008), 12-14 November 2008, Honolulu, Hawaii,

USA. 2008. P. 244–249.

10. Krylov V., Logvinov A., Ponomarenko A., Ponomarev D. Metrized small world properties data structure // Proceedings of the 17th Inter-

national Conference on Software Engineering and Data Engineering (SEDE 2008), 30 June - 2 July 2008, Los Angeles, California, USA.

2008. P. 203–208.

11. Logvinov A., Ponomarenko A., Krylov V., Malkov Y. Metrized small world approach for nearest neighbor search // Proceedings of the 2010

Spring/Summer Young Researchers’ Colloquium on Software Engineering (SYRCoSE 2010), 1-2 June 2010, Nizhny Novgorod, Russia.

2020. Vol. 4. P. 151–156.

12. Malkov Y., Ponomarenko A., Logvinov A., Krylov V. Approximate nearest neighbor algorithm based on navigable small world graphs //

Information Systems. 2014. No. 45. P. 61–68.

13. Malkov Y., Ponomarenko A., Logvinov A., Krylov V. Scalable distributed algorithm for approximate nearest neighbor search problem in high

dimensional general metric spaces // Lecture Notes in Computer Sciene – Similarity Search and Applications. 2012. Vol. 7404. P. 132–147.

14. Maymounkov P., Mazieres D. Kademlia: A peer-to-peer information system based on the XOR metric // Peer-to-Peer Systems. 2002.

Vol. 2429. P. 53–65.

15. Solving big data challenges for enterprise application performance management / T.Rabl [et al.] // Proceedings of the VLDB Endowment.

2012. Vol. 5. No. 12. P. 1724–1735.

16. Chord: A scalable peer-to-peer lookup service for internet applications / I.Stoica [et al.] // ACM SIGCOMM Computer Communication

Review. 2001. Vol. 31. No. 4. P. 149–160.

17. Tarkoma S. Overlay networks: Toward information networking. Boca Raton, FL: CRC Press, 2010. 237 p.

18. Opportunistic use of content addressable storage for distributed file systems / N.Tolia [et al.] // Proceedings of the 2003 USENIX Annual

Technical Conference (USENIX 2003), General Track, 9-14 June 2003, San Antonio, Texas, USA. 2003. Vol. 3. P. 127–140.

19. Watts D.J. Small worlds: The dynamic of networks between ordered and randomness. New Jersey: Princeton University Press, 1999. 168 p.

АНАЛИЗ ДАННЫХ И ИНТЕЛЛЕКТУАЛЬНЫЕ СИСТЕМЫ

