
48
BUSINESS INFORMATICS No. 1(39) – 2017

A segment tree based Top-k RMQ algorithm
and its application to the autocomplete
problem

Mikhail S. Dvoretckii
MSc Program Student
Lomonosov Moscow State University;
Programmer, IQ Systems LLC
Address: 1, Leninskie Gory, Moscow, 119991, Russian Federation
E-mail: mike.dvorecky@gmail.com

Abstract

An important way of ensuring data quality is controlling data input. One of the methods of doing that
is checking the input data against the corresponding reference data where applicable. This may be done via
autocomplete. Since reference data is usually stored in a centralized fashion, autocomplete algorithms usually
run in client-server architectures and face strict time requirements.

In this article, a new autocomplete task decomposition is formulated using an existing method based on
range minimum queries (RMQ). The Top-k RMQ problem is formulated and used in the autocomplete
problem decomposition. A segment tree based algorithm is proposed for the Top-k RMQ problem. While
the conventional segment tree based RMQ algorithm when used in autocomplete (in the Top-k RMQ sub-
problem) repeatedly processes the same nodes on the tree, the proposed algorithm is adapted directly to the
Top-k RMQ problem and does not require any node of the segment tree to be processed more than twice. A
complexity analysis is made for both the new Top-k RMQ algorithm and the conventional segment tree-based
RMQ approach. This analysis considers diff erent implementations of priority queues used in these algorithms,
specifi cally binary heaps and ordered arrays. The new algorithm has time complexity that is not lower than that
of the conventional algorithms with any priority queue implementation.

To prove the practical value of the new algorithm, a series of experiments was conducted using the data
from the All-Russian Classifi er of Addresses – a practical source of reference data for Russian address inputs.
The new algorithm demonstrates better time effi ciency than the conventional one in all experiments with all
priority queue implementations.

Key words: All-Russian Classifier of Addresses, autocomplete, segment tree, range minimum query (RMQ),

top k range minimum query (Top-k RMQ), algorithm.

Citation: Dvoretckii M.S. (2017) A segment tree based Top-k RMQ algorithm and its application to the

autocomplete problem. Business Informatics, no. 1 (39), pp. 48–54. DOI: 10.17323/1998-0663.2017.1.48.54.

Introduction

B
usiness applications are constantly dealing with

master data, i.e. data containing key business in-

formation not associated with specific business

transactions [1]. Master data can be data on people,

organizations, production processes, etc. For master

data processing, it is important to maintain its uniform-

ity in order to avoid generation of multiple records cor-

responding to similar things. To do this, master data is

most often subject to validation according to various

rules and is brought to some standard form that enables

us to maintain quality of this data and exclude creation of

duplicate records. On frequent occasions, this standard

form in turn relies on some reference data. For exam-

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

49
BUSINESS INFORMATICS No. 1(39) – 2017

ple, for information on addresses in Russia, the standard

is the All-Russian Classifier of Addresses (ARCA) [2],

namely, a hierarchical directory correlating all address

objects with positional numerical codes which uniquely

represent address objects to a street level. A standard-

ized line interpretation of the address also corresponds

to this.

Operators entering master data into the database pos-

sibly do not know its canonical form. The best solution

in this case is to issue variants of possible input infor-

mation during the entry using autocomplete algorithms.

Since the reference data management is ideally central-

ized, the programs which validate the data correspond-

ing to the reference data and issue prompts for them,

operate in a client-server mode. In this connection, the

algorithm developed on the server side must be very fast,

since an apparent delay in obtaining prompts reduces

the convenience and performance of the entry, and the

server itself must simultaneously solve a variety of prob-

lems for the associated workstations.

This article proposes that we modify the existing ap-

proach to autocomplete algorithms based on the decom-

position of the autocomplete problem into binary search

and range minimum query. A new statement is intro-

duced for the range minimum query problem, and its so-

lution algorithm is proposed using the segment tree. The

algorithm efficiency is proved by its comparison with the

existing autocomplete algorithm using the segment tree

for the Range Minimum Query using data from ARCA.

1. Autocomplete problem

The term “autocomplete” is taken to mean a set of

problems which can be extended to the following con-

tent-related statement: the user request is an incomplete

form of some line (or lines) from an a-priori known ap-

plicant list; appropriate lines are issued from the appli-

cant list in a certain form to the user, moreover, pref-

erably the one (those) which the user originally wanted

to receive. Algorithms solving autocomplete problems

are used in search systems (to provide the user with the

most frequently encountered or most anticipated que-

ries), in information retrieval systems (to offer variants

of responses to the user while the query is formed) and in

mobile devices (to increase typing speed on touch key-

boards). Autocomplete is also used when entering data

into databases, to maintain uniformity of similar data in

accordance with the reference data and prevent the oc-

currence of errors and duplicates.

Currently research in the autocomplete area is prima-

rily aimed at development of effective error-tolerant au-

tocomplete algorithms. However, for many applications

of the autocomplete problem, including correspond-

ing reference data to monitor the data input, it is quite

enough to solve it in a classical prefix statement. Strin-

gent response time requirements are generally imposed

on the autocomplete algorithms. Ideally, the user should

not notice a pause between the query input and response

output.

2. Statement of the autocomplete problem

Let us provide a formal statement of the autocomplete

problem by prefix.

Finite aggregate of the finite lines above finite al-

phabet is given:

,

on which weighting function is deter-

mined. For finite query let us write down a set of

its extensions from a number of lines in via :

.

Put another way, represents a set of lines from , for

which is a common prefix.

We need to find such a subset of extensions ,

which includes lines from , having the highest

weight. In cases where the task is trivial, and we

assume that . If , then let us introduce set

 of all subsets of Q, having power k in consideration:

.

For sets from let us determine price functional

:

Then the problem consists in finding such a subset ,

which maximizes the price functional:

.

3. Current approaches to solving

the autocomplete problem

While the more popular methods of solving the auto-

complete problem are based on the use of prefix trees

for fast-access retrieval of results, and also use caching

responses to provide prompt query handling through ad-

ditional memory requirements, one of the approaches

to solving the autocomplete problem with low memory

requirements set forth in [3] is decomposition of this

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

50
BUSINESS INFORMATICS No. 1(39) – 2017

problem into the problem of binary search by the direct

index and Range Minimum Query (RMQ) in the maxi-

mization variant.

The range minimum query (RMQ) is a problem of

finding a minimum element on a subset of consecu-

tive array elements of comparable data structures. This

problem is thoroughly studied primarily due to the fact

that the problem of finding the lowest/least common

ancestor (LCA) [4] reduces to it. Paper [5] describes

some other applications of this problem, and also pro-

poses its solution algorithm with time complexity O(1)

and space complexity O(n) and proves its memory op-

timality with requirement O(1) for the time complexity.

In order to solve the autocomplete problem, the RMQ

problem is solved repeatedly in the maximization variant

in order to obtain responses with a maximum weight

from a number of variants suitable by prefix. Moreover,

multiple RMQ-queries are made to the segments in-

cluding each other.

Algorithm 1 given below describes a universal plan of

using the existing algorithms for solving the autocom-

plete problem using RMQ. Here is a direct index,

is a RMQ-structure on the weight array of the variants,

 is a query-prefix, is the number of expected results,

 is a priority queue [6] of the segments in terms of the

maximum weight of the variants thereon. In so doing,

numerous RMQ-queries by segments including each

other are performed, possibly leading to a large number

of recurring actions.

4. Approach to solving

the autocomplete problem

based on top k range

minimum query (Top-k RMQ)

The problem of finding the top- range minimum

queries (Top-k RMQ) is set up in order to find a more

effective algorithm for solving the autocomplete prob-

lem when using a similar decomposition principle, i.e.

decomposition of the autocomplete problem into binary

search problem and Top-k RMQ.

Therefore, the following statement is proposed. Let

there be given a heap of numbers , with ele-

ments , and two indexes and , .

For case the Top-k RMQ problem is solved by

a set of all array indexes in segment – .

In case the solution is a subset of indexing set

 of power , for which a sum of array ele-

ments A is minimum:

,

,

.

As in the case of the classical RMQ problem, the state-

ment of the Top-k RMQ problem can be changed to the

problem of finding a subset with a maximum sum with-

out a structural change of the algorithm.

In this case, the autocomplete problem is decomposed

by the method given in algorithm 2. By comparison, al-

gorithm 1 can be considered a reduction of Top-k RMQ

to RMQ.

5. Original algorithm based

on segment trees

The proposed algorithm is a modification of the vari-

ant of algorithm 1 which uses the segment tree [7] as the

RMQ structure. This RMQ solution algorithm is not as-

ymptotically the best one (query complexity

for

asymptotically better), but it is actively used for the

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

51
BUSINESS INFORMATICS No. 1(39) – 2017

autocomplete problem [8]. When using the segment tree

as RMQ structure for the autocomplete problem, mul-

tiple RMQ queries for segments including each other re-

sult in a multiple rescanning of the same nodes at high

tree levels. Due to changing the problem statement from

pure RMQ to Top-k RMQ, these extra actions can be

excluded.

Algorithm 3 uses a segment tree to solve the Top-

k RMQ problem in the maximization variant. In this

case, not sub-segments, on which each next maximum

is present (as in Algorithm 1), but nodes deriving from

the way leading from the initial vertex to the maximum

are put on the priority queue. In so doing, the segment

tree property is used: the maximum in the internal ver-

tex is always reached in at least one of its daughter ver-

tices. When leaves are included in the segment tree 1,

this property makes it possible to find the way from any

vertex to the maximum in the segment corresponding

to it.

Contrary to algorithm 1, before the start of the so-

lution search cycle, not one structure corresponding

to the segment, but a set of segment tree vertices cov-

ering the segment at the highest level are put on the

priority queue. In this case, a leaf corresponding to

this value always exists for the vertex with the highest

value, and instead of storing its location in the tree

nodes, algorithm 3 provides for getting off to this leaf

while putting all unconsidered vertices on the priority

queue.

Keep in mind that as opposed to algorithm 1, where

an RMQ query should have already been performed to

put the segment on the priority queue, the new algo-

rithm does not require any additional processing for

the segment tree nodes. Furthermore, any segment

tree node is considered no more than twice - when

putting on the queue and selecting from it, while us-

ing the segment tree in algorithm 1 the root of this

tree will be considered times, if the segment size is

no less than .

6. Complexity assessment

of the proposed algorithm

By analogy with [3], let us define the algorithm

complexity with symbol with the assumption of

complexity of operations with priority queue .

Then excluding the binary search of the com-

plexity of executing Top-k RMQ query per the

scheme set forth in algorithm 1 using a standard

algorithm RMQ on the segment tree is ,

since on each of iterations no more than two

RMQ queries are executed with complexity .

Аlgorithm 3 also has complexity , inasmuch

as on iterations a descent from the initial vertex to

the tree leaf of high is executed .

Let us assume that the priority queue is implemented

using the binary heap [6]. Then the operations of adding

elements to the queue and reaching the maximum have

complexity , where is the queue length. There-

fore, the computational complexity of executing Top-k

RMQ by a classical method and algorithm 3 becomes

equal to and , re-

spectively. The highest asymptotic complexity of algo-

rithm 3 is caused by the fact that in each internal vertex

under consideration the daughter vertex not lying on the

way to the maximum is put on the priority queue; that

leads to overhead costs absent in algorithm 1, where in

each of steps no more than two segments are put on the

priority queue.

It should bу also noted that for the binary heap there

is no reliable method of limiting its permissible di-

mension, as its structure prevents us from determining

its minimum element faster than during operations

. However, no more than elements, one per step,

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

52
BUSINESS INFORMATICS No. 1(39) – 2017

are to be extracted from the priority queue for both

solution algorithms to solve Top-k RMQ problem. In

this case, it is handier to use a simpler variant of the

priority queue, namely ordered length array. In this

case, the operation of extracting the maximum is triv-

ial: the shift is not required because of the assumption

that the number of elements retrieved is limited, so

that you can leave the maximum in place and move

the top of the queue. An element is added with a linear

insertion with complexity O(k), and elements that are

known to be out completely miss the queue (the best

case). In this case, the complexities of the classical

algorithm and algorithm 3 as a whole become equal

to and , respectively. For Al-

gorithm 3, this also enables us to reduce the amount

of memory allocated to the priority queue. While the

classical approach leads to the fact that at any step

there are no more segments in the priority queue,

for algorithm 3 in the worst case the number of vertices

put on the queue is limited from above

(up to initial vertices, up to

vertices are

added on each of descents).

Note that the algorithm given above for using the ar-

ray for the priority queue is not universal, since it uses

a priori information on how many elements will be ex-

tracted from the queue. In general, the priority array-

based queue is to be either shifted when retrieving an

element (complexity) or shall use a circular struc-

ture (which formally limits a number of items which

can be stored in the queue or complicates the expan-

sion operation).

For small sizes of entries encountered in practice,

the greater asymptotic complexity is not an evidence of

lack of practicality of the algorithm. To prove the prac-

tical value of a new algorithm and the validity of the

new problem statement, let us perform an experimen-

tal comparison of the considered algorithms as compo-

nents of a real-world autocomplete problem.

7. Experimental results

The experimental comparison of algorithms was car-

ried out within the programs that solve the autocomplete

problem of reference address lines from the All-Russian

Classifier of Addresses (ARCA) [2], under the following

conditions:

 algorithms were software-implemented in C lan-

guage and collected by compiler gcc5 using operating

system Ubuntu 16.04 LTS with flag -lm;

 all components of the autocomplete algorithm,

having nothing to do with Top-k RMQ problem are

similarly implemented for both algorithms in both op-

tions;

 the time of solution of the autocomplete problem

is measured from the time of receiving the query to the

time of issuing responses;

 results were measured using the function clock_get-

time() and high-resolution timer CLOCK_PROCESS_

CPUTIME_ID (specified resolution is 1 ns);

 unloading of ARCA, including 1 222 662 address

lines as a set of reference lines was used. The weight was

calculated as the sum of a number of subordinated ad-

dress elements and weights of upper elements with at-

tenuation factors , where t is the difference in levels

between the current and the upper elements;

 a definite number of initial symbols from sequences

of randomly selected lines from the reference set similar

for both algorithms was taken as queries;

 k = 10 was taken in all experiments;

 All experiments were conducted using OS Ubuntu

16.04 LTS in sequence;

 Computer hardware parameters:

 Processor Intel Core i3-4010U, 1.7 GHz

 4 GB RAM

Table 1 provides the experiment results. Note that

the variants of algorithms with the priority queue in the

form of an ordered array in all experiments proved to be

more effective variants with a binary heap, and the new

algorithm variants showed better results as compared to

the variants of the classical approach.

Conclusion

The classical statement of an RMQ problem provides

for obtaining only one minimum (maximum) value

from the segment, and this is reflected by the existing

algorithms for solution of the problem. For cases where

it is necessary to extract more than one extreme value,

transfer to a wider setting of Top-k RMQ makes it pos-

sible not only to more clearly extract this subproblem,

but also to propose new algorithms for its solution, ini-

tially aimed at obtaining a set of results. Due to this, a

new algorithm is created within the real autocomplete

program that gives better results as compared to the al-

gorithm created by the classical method based on the

same data structure.

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

53
BUSINESS INFORMATICS No. 1(39) – 2017

Алгоритм нахождения k наименьших элементов
на отрезке (Top-k RMQ) на основе дерева отрезков
и его применение в задачах автодополнения

М.С. Дворецкий
студент магистратуры
Московский государственный университет им. М.В. Ломоносова;
программист, ООО «IQ Systems»
Адрес: 119991, г. Москва, Ленинские горы, д. 1
E-mail: mike.dvorecky@gmail.com

References

1. Pavlyuts A. (2016) Master-dannye i upravlenie imi. Chto eto takoe i komu ono neobkhodimo? [Master data and master data management. What

is it and who needs it?]. Available at: https://iqsystems.ru/master-data-basics-article/ (accessed 13 January 2017) (in Russian).

2. Klassifikator adresov Rossii (KLADR) [All-Russian Classifier of Addresses (ARCA)]. Available at: https://www.gnivc.ru/inf_provision/

classifiers_reference/kladr/ (accessed 13 January 2017) (in Russian).

3. Hsu B.-J., Ottaviano J. (2013) Space-efficient data structures for Top-k completion. Proceedings of the 22nd International World Wide Web

Conference. Rio de Janeiro, Brazil, 13–17 May 2013. NY: ACM, pp. 583–594.

4. Fischer J., Heun V. (2006) Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE.

Proceedings of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM 2006), Barcelona, Spain, 5–7 July 2006. Berlin,

Heidelberg: Springer, pp. 36–48.

5. Fischer J., Heun V. (2007) A new succinct representation of RMQ-information and improvements in the enhanced suffix array. Proceedings

of the First International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE 2007). Hangzhou,

China, 7–9 April 2007. Berlin, Heidelberg: Springer, pp. 459–470.

6. Knuth D. (1998) The art of computer programming. Vol. 3: Sorting and searching. Boston: Addison-Wesley Professional.

7. Matani D. (2011) An O(klogn) algorithm for prefix-based ranked autocomplete. Available at: http://www.dhruvbird.com/autocomplete.pdf

(accessed 12 May 2016).

8. lib-face on GitHub. Available at: http://github.com/duckduckgo/cpp-libface (accessed 13 January 2017).

Тable 1.
Experimental results of implementations of algorithms of solving autocomplete problems

Number of queries
Classical algorithm,

binary heap, s
Classical algorithm,

ordered array, s
New algorithm,
binary heap, s

New algorithm,
ordered array, s

Queries of length 4

1000 0.017555518 0.015670170 0.005854641 0.003890637

10000 0.175507172 0.160802266 0.057827076 0.038593355

100000 1.748508783 1.575862406 0.578767750 0.389285590

1000000 17.494891590 15.630793271 5.787819119 3.892264716

Queries of length 10

1000 0.017930115 0.016084878 0.006358041 0.004443302

10000 0.179062306 0.160433853 0.062990764 0.044009557

100000 1.786391754 1.604154774 0.630281282 0.440086321

1000000 17.832476482 15.973139661 6.303791885 4.402448944

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

БИЗНЕС-ИНФОРМАТИКА № 1(39) – 2017

54

Аннотация

Контроль данных при вводе является важным способом обеспечения их качества. Одним из методов
такого контроля является сопоставление вводимых данных, которые должны соответствовать справочной
информации, непосредственно с этой информацией в процессе ввода. Это приводит к необходимости решения
задачи автодополнения. Поскольку справочная информация, как правило, хранится централизованно, задача
автодополнения решается в архитектуре клиент-сервер и к алгоритму ее решения предъявляются жесткие
требования по быстродействию.

В данной статье на основе существующей декомпозиции задачи автодополнения с использованием
задачи поиска минимума на отрезке (RMQ) формулируется задача поиска k минимумов на отрезке (Top-k
RMQ) и приводится алгоритм ее решения, использующий дерево отрезков. В то время как классический
алгоритм RMQ по дереву отрезков при использовании в задаче автодополнения (в подзадаче Top-k RMQ)
требует многократного посещения вершин дерева, близких к корню, предложенный алгоритм Top-k RMQ
непосредственно адаптирован к этой задаче и не требует рассмотрения какой-либо вершины дерева отрезков
более двух раз. Выполнен анализ сложности как алгоритма Top-k RMQ, так и классического алгоритма RMQ
с использованием дерева отрезков. При этом учитываются различные варианты реализации приоритетных
очередей, используемых в этих алгоритмах, а именно вариант двоичной кучи и простая приоритетная очередь
на основе упорядоченного массива. Новый алгоритм имеет не меньшую вычислительную сложность, чем
классический, при любой реализации приоритетной очереди.

Для доказательства ценности нового алгоритма произведено экспериментальное сравнение алгоритмов
с использованием данных из Классификатора адресов России, представляющего собой реальный примера
справочной информации. Во всех проведенных экспериментах новый алгоритм показал лучшие результаты
по времени по сравнению с классическим.

Ключевые слова: Классификатор адресов России, автодополнение, дерево отрезков, поиск минимума на отрезке

(RMQ), поиск k наименьших элементов на отрезке (Top-k RMQ), алгоритм.

Цитирование: Dvoretckii M.S. A segment tree based Top-k RMQ algorithm and its application to the autocomplete problem //

Business Informatics. 2017. No. 1 (39). P. 48–54. DOI: 10.17323/1998-0663.2017.1.48.54.

Литература

1. Павлюц А. Мастер-данные и управление ими. Что это такое и кому оно необходимо? [Электронный ресурс]: https://iqsystems.ru/master-

data-basics-article/ (дата обращения 13.01.2017).

2. Классификатор адресов России (КЛАДР) // ГНИВЦ. [Электронный ресурс]: https://www.gnivc.ru/inf_provision/classifiers_reference/kladr/

(дата обращения 13.01.2017).

3. Hsu B.-J., Ottaviano J. Space-efficient data structures for Top-k completion // Proceedings of the 22nd International World Wide Web Conference. Rio

de Janeiro, Brazil, 13–17 May 2013. NY: ACM, 2013. P. 583–594.

4. Fischer J., Heun V. Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE // Proceedings of the 17th

Annual Symposium on Combinatorial Pattern Matching (CPM 2006), Barcelona, Spain, 5–7 July 2006. Berlin, Heidelberg: Springer, 2006. P. 36–48.

5. Fischer J., Heun V. A new succinct representation of RMQ-information and improvements in the enhanced suffix array // Proceedings of the First

International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE 2007). Hangzhou, China, 7–9

April 2007. Berlin, Heidelberg: Springer, 2007. P. 459–470.

6. Knuth D. (1998) The art of computer programming. Vol. 3: Sorting and searching. Boston: Addison-Wesley Professional, 1998.

7. Matani D. An algorithm for prefix-based ranked autocomplete. [Электронный ресурс]: http://www.dhruvbird.com/autocomplete.pdf

(дата обращения 12.05.2016).

8. lib-face на GitHub. [Электронный ресурс]: http://github.com/duckduckgo/cpp-libface (дата обращения 13.01.2017).

МАТЕМАТИЧЕСКИЕ МЕТОДЫ И АЛГОРИТМЫ БИЗНЕС-ИНФОРМАТИКИ

