MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

A segment tree based Top-k RMQ algorithm
and its application to the autocomplete
problem

Mikhail S. Dvoretckii

MSc Program Student

Lomonosov Moscow State University;

Programmer, 1Q Systems LLC

Address: 1, Leninskie Gory, Moscow, 119991, Russian Federation
E-mail: mike.dvorecky @gmail.com

Abstract

An important way of ensuring data quality is controlling data input. One of the methods of doing that
is checking the input data against the corresponding reference data where applicable. This may be done via
autocomplete. Since reference data is usually stored in a centralized fashion, autocomplete algorithms usually
run in client-server architectures and face strict time requirements.

In this article, a new autocomplete task decomposition is formulated using an existing method based on
range minimum queries (RMQ). The Top-k RMQ problem is formulated and used in the autocomplete
problem decomposition. A segment tree based algorithm is proposed for the Top-k RMQ problem. While
the conventional segment tree based RMQ algorithm when used in autocomplete (in the Top-k RMQ sub-
problem) repeatedly processes the same nodes on the tree, the proposed algorithm is adapted directly to the
Top-k RMQ problem and does not require any node of the segment tree to be processed more than twice. A
complexity analysis is made for both the new Top-k RMQ algorithm and the conventional segment tree-based
RMQ approach. This analysis considers different implementations of priority queues used in these algorithms,
specifically binary heaps and ordered arrays. The new algorithm has time complexity that is not lower than that
of the conventional algorithms with any priority queue implementation.

To prove the practical value of the new algorithm, a series of experiments was conducted using the data

from the All-Russian Classifier of Addresses — a practical source of reference data for Russian address inputs.
The new algorithm demonstrates better time efficiency than the conventional one in all experiments with all

priority queue implementations.

Key words: All-Russian Classifier of Addresses, autocomplete, segment tree, range minimum query (RMQ),

top k range minimum query (Top-k RMQ), algorithm.

Citation: Dvoretckii M.S. (2017) A segment tree based Top-k RMQ algorithm and its application to the
autocomplete problem. Business Informatics, no. 1 (39), pp. 48—54. DOI: 10.17323/1998-0663.2017.1.48.54.

Introduction

usiness applications are constantly dealing with
B master data, i.e. data containing key business in-
formation not associated with specific business
transactions [1]. Master data can be data on people,

organizations, production processes, etc. For master
data processing, it is important to maintain its uniform-

48

ity in order to avoid generation of multiple records cor-
responding to similar things. To do this, master data is
most often subject to validation according to various
rules and is brought to some standard form that enables
us to maintain quality of this data and exclude creation of
duplicate records. On frequent occasions, this standard
form in turn relies on some reference data. For exam-

BUSINESS INFORMATICS No. 1(39) — 2017

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

ple, for information on addresses in Russia, the standard
is the All-Russian Classifier of Addresses (ARCA) [2],
namely, a hierarchical directory correlating all address
objects with positional numerical codes which uniquely
represent address objects to a street level. A standard-
ized line interpretation of the address also corresponds
to this.

Operators entering master data into the database pos-
sibly do not know its canonical form. The best solution
in this case is to issue variants of possible input infor-
mation during the entry using autocomplete algorithms.
Since the reference data management is ideally central-
ized, the programs which validate the data correspond-
ing to the reference data and issue prompts for them,
operate in a client-server mode. In this connection, the
algorithm developed on the server side must be very fast,
since an apparent delay in obtaining prompts reduces
the convenience and performance of the entry, and the
server itself must simultaneously solve a variety of prob-
lems for the associated workstations.

This article proposes that we modify the existing ap-
proach to autocomplete algorithms based on the decom-
position of the autocomplete problem into binary search
and range minimum query. A new statement is intro-
duced for the range minimum query problem, and its so-
lution algorithm is proposed using the segment tree. The
algorithm efficiency is proved by its comparison with the
existing autocomplete algorithm using the segment tree
for the Range Minimum Query using data from ARCA.

1. Autocomplete problem

The term “autocomplete” is taken to mean a set of
problems which can be extended to the following con-
tent-related statement: the user request is an incomplete
form of some line (or lines) from an a-priori known ap-
plicant list; appropriate lines are issued from the appli-
cant list in a certain form to the user, moreover, pref-
erably the one (those) which the user originally wanted
to receive. Algorithms solving autocomplete problems
are used in search systems (to provide the user with the
most frequently encountered or most anticipated que-
ries), in information retrieval systems (to offer variants
of responses to the user while the query is formed) and in
mobile devices (to increase typing speed on touch key-
boards). Autocomplete is also used when entering data
into databases, to maintain uniformity of similar data in
accordance with the reference data and prevent the oc-
currence of errors and duplicates.

Currently research in the autocomplete area is prima-
rily aimed at development of effective error-tolerant au-

BUSINESS INFORMATICS No. 1(39) — 2017

tocomplete algorithms. However, for many applications
of the autocomplete problem, including correspond-
ing reference data to monitor the data input, it is quite
enough to solve it in a classical prefix statement. Strin-
gent response time requirements are generally imposed
on the autocomplete algorithms. Ideally, the user should
not notice a pause between the query input and response
output.

2. Statement of the autocomplete problem
Let us provide a formal statement of the autocomplete
problem by prefix.

Finite aggregate W of the finite lines above finite al-
phabet 2 is given:

W:{w,. |w, eZ*,izo,n—l},

on which weighting function f(w):W — R is deter-
mined. For finite query g € X let us write down a set of
its extensions from a number of lines in W viaQc W

O={w weW, I ez :w =qv}.

Put another way, Q represents a set of lines from W, for
which g is a common prefix.

We need to find such a subset of extensions R c O,
which includes ke N lines from Q, having the highest
weight. In cases where |Q| < k the task is trivial, and we
assume that R = Q. If |Q|> k, then let us introduce set
B, of all subsets of O, having power k in consideration:

B, ={B|BcQ,|B|=k}.

For sets B from B, let us determine price functional
C():B, >R
C(B)=3 f(w).
weB
Then the problem consists in finding such a subset B,
which maximizes the price functional:

R, =B =argmaxC(B).

BeB;

3. Current approaches to solving
the autocomplete problem

While the more popular methods of solving the auto-
complete problem are based on the use of prefix trees
for fast-access retrieval of results, and also use caching
responses to provide prompt query handling through ad-
ditional memory requirements, one of the approaches
to solving the autocomplete problem with low memory
requirements set forth in [3] is decomposition of this

49

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

problem into the problem of binary search by the direct
index and Range Minimum Query (RMQ) in the maxi-
mization variant.

The range minimum query (RMQ) is a problem of
finding a minimum element on a subset of consecu-
tive array elements of comparable data structures. This
problem is thoroughly studied primarily due to the fact
that the problem of finding the lowest/least common
ancestor (LCA) [4] reduces to it. Paper [5] describes
some other applications of this problem, and also pro-
poses its solution algorithm with time complexity O(1)
and space complexity O(n) and proves its memory op-
timality with requirement O(1) for the time complexity.

In order to solve the autocomplete problem, the RMQ
problem is solved repeatedly in the maximization variant
in order to obtain k responses with a maximum weight
from a number of variants suitable by prefix. Moreover,
multiple RMQ-queries are made to the segments in-
cluding each other.

Algorithm 1 given below describes a universal plan of
using the existing algorithms for solving the autocom-
plete problem using RMQ. Here W is a direct index, T’
is a RMQ-structure on the weight array of the variants,
q is a query-prefix, k is the number of expected results,
pq is a priority queue [6] of the segments in terms of the
maximum weight of the variants thereon. In so doing,
numerous RMQ-queries by segments including each
other are performed, possibly leading to a large number
of recurring actions.

Autocomplete_Algorithm 1 (W, T, q, k | Rk)
I, r < Binary_search(W, q)
If Incorrect(/, r)
Return
range < Segment (I, r, RMQ(T, [, r))
pqg<—9
pq.Add(range)
i—0
While i < k and no pg.Empty
range «— pq.GetTop()
Rk.Add(range.maxpos)
If (range.maxpos |= range.l)
rangel < Segment(range.l, range.maxpos
— 1, RMQ(7, range.l, range.maxpos — 1))
pq-Add(rangel)
If (range.maxpos = range.r)
range2 «— Segment(range.maxpos + 1,
range.r, RMQ(T, range.maxpos + 1,
range.r))
pq.-Add(range2)
i—i+1
End of While Cycle
End of Algorithm.

50

4. Approach to solving
the autocomplete problem
based on top & range
minimum query (Top-k RMQ)

The problem of finding the top-k range minimum
queries (Top-k RMQ) is set up in order to find a more
effective algorithm for solving the autocomplete prob-
lem when using a similar decomposition principle, i.e.
decomposition of the autocomplete problem into binary
search problem and Top-k RMQ.

Therefore, the following statement is proposed. Let
there be given a heap of numbers A, |A| = n, with ele-
mentsa,,i =0,n—1,and twoindexes/andr,0</ < r < n.

For case k > r — [the Top-k RMQ problem is solved by
aset of all array A indexes in segment[/, r]— R, ={/,...,r}.

In case k< r— [the solution is a subset of indexing set
R, c {l,...,r} of power k, for which a sum of array ele-
ments 4 is minimum:

B, ={B|Bc{l,..r},|B|=k}

C(B)=2a

ieB
R, =B =argminC(B).
BeB,

Asin the case of the classical RMQ problem, the state-
ment of the Top-k RMQ problem can be changed to the
problem of finding a subset with a maximum sum with-
out a structural change of the algorithm.

In this case, the autocomplete problem is decomposed
by the method given in algorithm 2. By comparison, al-
gorithm 1 can be considered a reduction of Top-k RMQ
to RMQ.

Autocomplete_Algorithm 2(W, T, q, k | Rk)
I, r < Binary_search(W, q)
If Incorrect(/, r)
Return
Rk — TopkRMQ(T, I, 7, k)
End of Algorithm.

5. Original algorithm based
on segment trees

The proposed algorithm is a modification of the vari-
ant of algorithm 1 which uses the segment tree [7] as the
RMQ structure. This RMQ solution algorithm is not as-
ymptotically the best one (query complexity O(Inn) for
asymptotically better O(1)), but it is actively used for the

BUSINESS INFORMATICS No. 1(39) — 2017

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

autocomplete problem [8]. When using the segment tree
as RMQ structure for the autocomplete problem, mul-
tiple RMQ queries for segments including each other re-
sult in a multiple rescanning of the same nodes at high
tree levels. Due to changing the problem statement from
pure RMQ to Top-k RMQ, these extra actions can be
excluded.

Algorithm 3 uses a segment tree to solve the Top-
k RMQ problem in the maximization variant. In this
case, not sub-segments, on which each next maximum
is present (as in Algorithm 1), but nodes deriving from
the way leading from the initial vertex to the maximum
are put on the priority queue. In so doing, the segment
tree property is used: the maximum in the internal ver-
tex is always reached in at least one of its daughter ver-
tices. When leaves are included in the segment tree 1,
this property makes it possible to find the way from any
vertex to the maximum in the segment corresponding
to it.

Algorithm 3. Top-k RMQ based on the range tree
Find_beginning(7, /, r, pq)
If T'start>r or Tend <1
Return
If T'start > [and T'end <r
Pq-Add(T)
Else
Find beginning(7 /left, [, r, pq)
Find beginning(Zright, I, r, pq)

TopkRMQ(7, /, r, k | Rk)
pq—9
Find beginning(7, /, r, pq)
i—0
While i < k and no pg.Empty
CurT «— pq.GetTop()
While (CurT.start \= CurT.end)
If (CurT.left. max = CurT.max)
pq-Add(CurT right)
CurT — CurTleft
Else
pq.Add(CurT left)
CurT <« CurTright
End of While Cycle
Rk.Add(CurT start)
i—i+l1
End of While Cycle
End of Algorithm.

Contrary to algorithm 1, before the start of the so-
lution search cycle, not one structure corresponding
to the segment, but a set of segment tree vertices cov-
ering the segment at the highest level are put on the

BUSINESS INFORMATICS No. 1(39) — 2017

priority queue. In this case, a leaf corresponding to
this value always exists for the vertex with the highest
value, and instead of storing its location in the tree
nodes, algorithm 3 provides for getting off to this leaf
while putting all unconsidered vertices on the priority
queue.

Keep in mind that as opposed to algorithm 1, where
an RMQ query should have already been performed to
put the segment on the priority queue, the new algo-
rithm does not require any additional processing for
the segment tree nodes. Furthermore, any segment
tree node is considered no more than twice - when
putting on the queue and selecting from it, while us-
ing the segment tree in algorithm 1 the root of this
tree will be considered k times, if the segment size is
no less than k.

6. Complexity assessment
of the proposed algorithm

By analogy with [3], let us define the algorithm
complexity with symbol O with the assumption of
complexity of operations with priority queue O(1).
Then excluding the binary search of the com-
plexity of executing Top-k RMQ query per the
scheme set forth in algorithm 1 using a standard
algorithm RMQ on the segment tree is é(klnn),
since on each of k iterations no more than two
RMQ queries are executed with complexity O(Inn).
Algorithm 3 also has complexity O(kln n), inasmuch
as on k iterations a descent from the initial vertex to
the tree leaf of [log, n]+1 high is executed .

Let us assume that the priority queue is implemented
using the binary heap [6]. Then the operations of adding
elements to the queue and reaching the maximum have
complexity O(In/), where / is the queue length. There-
fore, the computational complexity of executing Top-k
RMQ by a classical method and algorithm 3 becomes
equal to O(kInk+kInn) and O(kInn-In(kInn)), re-
spectively. The highest asymptotic complexity of algo-
rithm 3 is caused by the fact that in each internal vertex
under consideration the daughter vertex not lying on the
way to the maximum is put on the priority queue; that
leads to overhead costs absent in algorithm 1, where in
each of k steps no more than two segments are put on the
priority queue.

It should by also noted that for the binary heap there
is no reliable method of limiting its permissible di-
mension, as its structure prevents us from determining
its minimum element faster than during operations
O(/). However, no more than k elements, one per step,

51

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

are to be extracted from the priority queue for both
solution algorithms to solve Top-k RMQ problem. In
this case, it is handier to use a simpler variant of the
priority queue, namely ordered length & array. In this
case, the operation of extracting the maximum is triv-
ial: the shift is not required because of the assumption
that the number of elements retrieved is limited, so
that you can leave the maximum in place and move
the top of the queue. An element is added with a linear
insertion with complexity O(k), and elements that are
known to be out completely miss the queue (the best
case). In this case, the complexities of the classical
algorithm and algorithm 3 as a whole become equal
to O(k2 +kln n) and O(k2 In n), respectively. For Al-
gorithm 3, this also enables us to reduce the amount
of memory allocated to the priority queue. While the
classical approach leads to the fact that at any step
there are no more k +1segments in the priority queue,
for algorithm 3 in the worst case the number of vertices
put on the queue is limited from above [(k + 2)log2 n]
(up to 2log, n initial vertices, up to log, n vertices are
added on each of k descents).

Note that the algorithm given above for using the ar-
ray for the priority queue is not universal, since it uses
a priori information on how many elements will be ex-
tracted from the queue. In general, the priority array-
based queue is to be either shifted when retrieving an
element (complexity O(J)) or shall use a circular struc-
ture (which formally limits a number of items which
can be stored in the queue or complicates the expan-
sion operation).

For small sizes of entries encountered in practice,
the greater asymptotic complexity is not an evidence of
lack of practicality of the algorithm. To prove the prac-
tical value of a new algorithm and the validity of the
new problem statement, let us perform an experimen-
tal comparison of the considered algorithms as compo-
nents of a real-world autocomplete problem.

7. Experimental results

The experimental comparison of algorithms was car-
ried out within the programs that solve the autocomplete
problem of reference address lines from the All-Russian
Classifier of Addresses (ARCA) [2], under the following
conditions:

4 algorithms were software-implemented in C lan-
guage and collected by compiler gcc5 using operating
system Ubuntu 16.04 LTS with flag -Im;

52

4 all components of the autocomplete algorithm,
having nothing to do with Top-k RMQ problem are
similarly implemented for both algorithms in both op-
tions;

4 the time of solution of the autocomplete problem
is measured from the time of receiving the query to the
time of issuing responses;

4 results were measured using the function clock get-
time() and high-resolution timer CLOCK_PROCESS _
CPUTIME _ID (specified resolution is 1 ns);

4 unloading of ARCA, including 1 222 662 address
lines as a set of reference lines was used. The weight was
calculated as the sum of a number of subordinated ad-
dress elements and weights of upper elements with at-
tenuation factors 0,1', where ¢ is the difference in levels
between the current and the upper elements;

4 a definite number of initial symbols from sequences
of randomly selected lines from the reference set similar
for both algorithms was taken as queries;

4 k=10 was taken in all experiments;

4 All experiments were conducted using OS Ubuntu
16.04 LTS in sequence;

4 Computer hardware parameters:
<> Processor Intel Core i3-4010U, 1.7 GHz
<>4 GB RAM

Table 1 provides the experiment results. Note that
the variants of algorithms with the priority queue in the
form of an ordered array in all experiments proved to be
more effective variants with a binary heap, and the new
algorithm variants showed better results as compared to
the variants of the classical approach.

Conclusion

The classical statement of an RMQ problem provides
for obtaining only one minimum (maximum) value
from the segment, and this is reflected by the existing
algorithms for solution of the problem. For cases where
it is necessary to extract more than one extreme value,
transfer to a wider setting of Top-k RMQ makes it pos-
sible not only to more clearly extract this subproblem,
but also to propose new algorithms for its solution, ini-
tially aimed at obtaining a set of results. Due to this, a
new algorithm is created within the real autocomplete
program that gives better results as compared to the al-
gorithm created by the classical method based on the
same data structure. B

BUSINESS INFORMATICS No. 1(39) — 2017

MATHEMATICAL METHODS AND ALGORITHMS OF BUSINESS INFORMATICS

Table 1.

Experimental results of implementations of algorithms of solving autocomplete problems

Classical algorithm, Classical algorithm, New algorithm,

Number of queries binary heap, s ordered array, s binary heap, s

New algorithm,
ordered array, s

Queries of length 4

1000 0.017555518 0.015670170 0.005854641 0.003890637
10000 0.175507172 0.160802266 0.057827076 0.038593355
100000 1.748508783 1.575862406 0.578767750 0.389285590
1000000 17.494891590 15.630793271 5.787819119 3.892264716
Queries of length 10
1000 0.017930115 0.016084878 0.006358041 0.004443302
10000 0.179062306 0.160433853 0.062990764 0.044009557
100000 1.786391754 1.604154774 0.630281282 0.440086321
1000000 17.832476482 15.973139661 6.303791885 4.402448944
References

1. Pavlyuts A. (2016) Master-dannye i upravlenie imi. Chto eto takoe i komu ono neobkhodimo ? [Master data and master data management. What
is it and who needs it?]. Available at: https://igsystems.ru/master-data-basics-article/ (accessed 13 January 2017) (in Russian).

2. Klassifikator adresov Rossii (KLADR) [All-Russian Classifier of Addresses (ARCA)]. Available at: https://www.gnivc.ru/inf_provision/

classifiers_reference/kladr/ (accessed 13 January 2017) (in Russian).

3. Hsu B.-J., Ottaviano J. (2013) Space-efficient data structures for Top-k completion. Proceedings of the 22nd International World Wide Web

Conference. Rio de Janeiro, Brazil, 13—17 May 2013. NY: ACM, pp. 583—594.

4. Fischer J., Heun V. (2006) Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE.
Proceedings of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM 2006), Barcelona, Spain, 5—7 July 2006. Berlin,

Heidelberg: Springer, pp. 36—48.

5. FischerlJ., Heun V. (2007) A new succinct representation of RMQ-information and improvements in the enhanced suffix array. Proceedings
of the First International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE 2007). Hangzhou,

China, 7—9 April 2007. Berlin, Heidelberg: Springer, pp. 459—470.

S

(accessed 12 May 2016).
8. lib-face on GitHub. Available at: http://github.com/duckduckgo/cpp-libface (accessed 13 January 2017).

Anroputm HaxoXXAeHUs K HANMEHbLUUX 3JIeMEHTOB
Ha oTtpe3ke (Top-k RMQ) Ha ocHoBe fiepeBa OTpE3KOB
U ero npumMmeHeHne B 3afa4yax aBTo4oNnoNHEHUA

M.C. [iBopeukuii

cmydenm mazucmpamypul

Mockoesckuii eocydapcmeennuiii ynugepcumem um. M. B. Jlomonocosa;
npoepammucm, 000 «IQ Systems»

Adpec: 119991, e. Mockea, Jlenunckue eoput, 0. 1

E-mail: mike.dvorecky@gmail.com

Knuth D. (1998) The art of computer programming. Vol. 3: Sorting and searching. Boston: Addison-Wesley Professional.
Matani D. (2011) An O(klogn) algorithm for prefix-based ranked autocomplete. Available at: http://www.dhruvbird.com/autocomplete.pdf

BUSINESS INFORMATICS No. 1(39) — 2017

33

MATEMATHUYECKHWE METOJIbl 1 AITOPUTMbI BUSHEC-UHOOPMATHWKHA

AHHOTAIUA

KoHTponb maHHBIX TIpu BBOIE SIBJISIETCSI BAXKHBIM CITOCOOOM obecriedeHus ux KadectBa. OMHUM U3 METOOOB
TAKOTO KOHTPOJISI SIBJISIETCSI COMOCTABJIEHUE BBOAMMBIX TAHHBIX, KOTOPbIE JOJKHBI COOTBETCTBOBATH CIIPABOYHOM
nHbOpPMaLINK, HEOCPEICTBEHHO C 3TOI MHGbOpMaLKeii B mpoliecce BBOAA. DTO IPUBOAUT K HEOOXOAMMOCTH pELIEHUST
3a1auu aBTonononHeHus. [TockosbKy cripaBoyHast MHGopMalus, Kak MpaBuiio, XpaHUTCS LIEeHTPaM30BaHHO, 3a1a4a
aBTONOTIOJIHEHUS PeIllaeTcsl B apXUTEKTYpe KIMEHT-CEPBEP U K aJITOPUTMY €€ PEIeHUs] MPEAbIBISIOTCS XKECTKUE
TpeOoBaHUsI MO OBICTPONEUCTBUIO.

B nmaHHOIT cTaTbe Ha OCHOBE CYILIECTBYIOILIEH NEKOMIO3UIIMU 3aJayd aBTONOIOJHEHMSI C MCIOJIb30BaHUEM
3aJlayr Movcka MMHUMyMa Ha oTpe3ke (RMQ) dopmynupyeTcs 3agaya movcka £ MUHUMYMOB Ha oTpe3ke (Top-k
RMQ) 1 npuBOAMTCS aJITOPUTM €€ PEelIeHMs, UCITONb3YIOIINI NepEeBO OTPE3KOB. B TO BpeMs Kak KJacCUYECKUI
anroput™ RMQ mno nepeBy oTpe3KoB MpU MCIONb30BaHMM B 3ajiaue aBToponoiHeHUs (B nmon3anaye Top-k RMQ)
TpeOyeT MHOTOKPATHOTO TOCEIIeHUs BEpIINH IepeBa, OJIM3KUX K KOPHIO, TIPemIoKeHHBIN anroput™M Top-k RMQ
HETMOCPEICTBEHHO alalTUPOBAH K 3TOM 3a1aue ¥ He TpeOyeT pacCMOTPEHMS KaKoi-TMO0 BEPIIMHBI IepeBa OTPE3KOB
Oosiee ABYX pa3. BeinmosHeH aHaau3 cJIOXXHOCTH Kak anroputMma Top-k RMQ, Tak u kitaccudeckoro ajiroputmMa RMQ
C UCITOJIb30BaHMEM JIepeBa OTPe3KOB. [1py 3TOM YyUMTHIBAIOTCS pa3iMUHbIe BapUaHThl peau3aluu MPUOPUTETHBIX
ouepeneii, UCTTOIb3yeMbIX B 3THX aJITOPUTMaX, a UMEHHO BapMaHT ABOMYHOM KY4M ¥ TIPOCTAst IPUOPUTETHAST OUepelb
Ha OCHOBE YIOPSIOYEeHHOTO MaccuBa. HOBBIN alropuT™M MMeeT He MEHBIIYI0 BHIUYMCIUTENBHYIO CJIOXHOCTh, YeM
KJIaCCUYECKHIt, TIpH JII0OO0M peain3aliiy IPUOPUTETHOM OUepenu.

JI71s1 moKa3aTebCTBA LIEHHOCTH HOBOTO ajJrOpUTMa MPOM3BENECHO SKCIIEPUMEHTAIbHOE CpaBHEHUE aJIrOPUTMOB
¢ MCIOJIb30BaHKMeM MaHHbIX U3 Kitaccudukaropa anpecoB Poccuu, mpencTaBisionero coooi peaabHbIi TpuMepa
cripaBoYHOM nHGopManyu. Bo Bcex MpoBeNeHHBIX SKCIIEPUMEHTAX HOBBIN aJITOPUTM ITOKA3aJjl JIYYIIUEe PE3YJILTaThI
10 BpEMEHH I10 CPABHEHUIO C KJIACCUYECKUM.

Kmouessie caoBa: Kiaccudukarop anpecoB Poccun, aBTOmOIIOTHEHNE, IEPEBO OTPE3KOB, IIOMCK MUHUMYMa Ha OTpe3Ke
(RMQ), mouck k HauMeHbIIIUX 31eMeHTOB Ha oTpe3Ke (Top-k RMQ), anroputM.

HurnpoBanue: Dvoretckii M.S. A segment tree based Top-k RMQ algorithm and its application to the autocomplete problem //
Business Informatics. 2017. No. 1 (39). P. 48—54. DOI: 10.17323/1998-0663.2017.1.48.54.

Jlureparypa

[Masmion; A. Mactep-aaHHble U ynipaBiieHue UMU. UTo 9T0 Takoe 1 KoMy OHO Heobxonumo? [DneKTpoHHbI! pecypc]: https://igsystems.ru/master-
data-basics-article/ (mara obparenust 13.01.2017).

Knaccudukatop anpecoB Poccru (KJIAJIP) // THUBLIL. [OnekrponHsiid pecype]: https://www.gnive.ru/inf_provision/classifiers_reference/kladr/
(mara ooparuenus 13.01.2017).

Hsu B.-J., Ottaviano J. Space-efficient data structures for Top-k completion // Proceedings of the 22nd International World Wide Web Conference. Rio
de Janeiro, Brazil, 13—17 May 2013. NY: ACM, 2013. P. 583—594.

Fischer J., Heun V. Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE // Proceedings of the 17th
Annual Symposium on Combinatorial Pattern Matching (CPM 2006), Barcelona, Spain, 5—7 July 2006. Berlin, Heidelberg: Springer, 2006. P. 36—48.

Fischer J., Heun V. A new succinct representation of RMQ-information and improvements in the enhanced suffix array // Proceedings of the First
International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE 2007). Hangzhou, China, 7-9
April 2007. Berlin, Heidelberg: Springer, 2007. P. 459—470.

Knuth D. (1998) The art of computer programming. Vol. 3: Sorting and searching. Boston: Addison-Wesley Professional, 1998.

Matani D. An O(kInn) algorithm for prefix-based ranked autocomplete. [DnekrponHHsbiii pecype]: http://www.dhruvbird.com/autocomplete.pdf
(mata obpamienvist 12.05.2016).

lib-face Ha GitHub. [9nextpoHHbIii pecypc]: http://github.com/duckduckgo/cpp-libface (nata obpamenust 13.01.2017).

54

BU3HEC-MHO®OPMATUKA Ne 1(39) — 2017

