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Abstract

A model for organizing cargo transportation between two node stations connected by a railway line
which contains a certain number of intermediate stations is considered. The movement of cargo is in
one direction. Such a situation may occur, for example, if one of the node stations is located in a region
which produce raw material for manufacturing industry located in another region, and there is another
node station. The organization of freight traffic is performed by means of a number of technologies. These
technologies determine the rules for taking on cargo at the initial node station, the rules of interaction
between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The
process of cargo transportation is followed by the set rule of control. For such a model, one must determine
possible modes of cargo transportation and describe their properties.

This model is described by a finite-dimensional system of differential equations with nonlocal linear
restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results
in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-
solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically
using the Runge—Kutta method of the fourth order to build these quasi-solutions and determine their
rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-
solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of
quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the
model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of
cargo on a node station.
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Introduction

esearch has been is devoted to the problem of

organizing cargo transportation; in particular, it

is considered in works [1—7]. In [8—10] a mod-
el devoted to studying the process of organizing cargo
transportation realized through a number of technolo-
gies is investigated. The distinctive feature of this model
is studying the modes of cargo transportation satisfying
the set “simple” control system. Several variants of the
model are considered.

The first version describes transnational transporta-
tion, i.e. transportation without a selected initial station
of departure and a final station of distribution of cargo.
This version of the model is given by a countable system
of differential equations with nonlocal linear restric-
tions:

L(O=az, \—2az+az,,+9(z), i€ Z,t€[0,+), (1)

()= 2, (t+7), i€ Z, 1€[0,+>), ()

where z,(#) — the number of the involved nodes at the sta-
tion with number i in timepoint #;

7 — the characteristic of control.

Definition 1. The family of absolutely continuous
functions {z,(.)},.,, defined on [0, + o), It called the deci-
sion of the system of differential equations (1), if almost
all 7€ [0, + o) functions z; (.) satisfy this system.

Solutions of the system of differential equations
(1), satisfying the condition (2) are called solutions of
the traveling wave type. The theorem of existence and
uniqueness of solutions of traveling wave type is prov-
en. From the substantive point of view, this theorem de-
scribes a possible mode of cargo transportation at the
quantity of the involved nodes recorded in the initial
time point on a randomly selected station.

The second version describes transportation with a se-
lected initial station of departure of the cargo. This ver-
sion of the model is given by the countable system of dif-
ferential equations with nonlocal linear constraints:

Zo(t) = l)b(t) —aZ,+az,+ q)o(zo)5 re [0’+°°):

(3)
z(O=az,—2az,+az,,+9(z),i=1,2,..., t[0,+o0), (4)

z,()=z,,(F+71),i=0,1,2, ..., t€[0,+o0). 4)

Apparently, unlike system (1) — (2), the first equa-
tion is allocated here. The function participating in this
equation describes the intensity of handover of cargo on
the initial station. As it appeared, the class of solutions
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of system (3) — (5) is extremely narrow. This leads to the
need to “correct” the extension of the class of solutions
of the traveling wave type to the class “quasi-travelling”
wave type.

Definition 2. The family of piecewise absolutely con-
tinuous functions {z,(.)};~, defined on [0, + ), it called a
quasi-solution of thetraveling wave type with character-
istic 7 > 0 for the system (3) — (5), if almost all7€[0,+ =)
functions z; (.) satisfy the system, and gaps are located at
the points k7, k=1,2,....

It should be noted that another possible way to expand
the class of traveling wave type solutions to the class of
“quasi-traveling” wave type solutions making waves is
the weakening of the nonlocal linear restrictions (5) (as-
suming implementation of these restrictions with some
error). However, for these restrictions to define the con-
trol system at cargo transportation in this type of expan-
sion is unacceptable as the control system (5) is the sim-
plest and therefore realized.

The theorem of existence and uniqueness of the
traveling wave type quasi-solution is proven. As follows
from definition 2, quasi-solution components have gaps
in points multiple z. This theorem also describes the pos-
sible mode of cargo transportation at the quantity of the
involved nodes recorded in initial the time point at an
arbitrary fixed station. However, unlike the previous ver-
sion of the model, this mode of transportation involves a
sharp change in the number of involved nodes (jumps) in
time points multiple to the characteristic of the control
system. Considering the small equipment of intermediate
stations, a change of number of the involved nodes cannot
be too big. This leads to the formulation of the problem
of minimizing the magnitude of the jumps, depending on
the parameters of the system, which is also solved.

The third version describes transportation between a
dedicated initial station of departure and final station of
distribution of cargo. This version of the model describes
the cargo on the long section of the route between the
two node stations. Unlike the first and second versions,
this version of the model is described by a finite number
of differential equations with nonlocal linear con-
straints. The class of solutions of this system is also very
narrow, so, here, as well as for system (3) — (5), there
is an expansion of a class of solutions of traveling-wave
type to class of solutions of “quasi-traveling” wave type.
As in the previous case, considering the small equip-
ment of intermediate stations, a change of number of
the involved nodes cannot be too big. This leads to the
formulation of the problem of minimizing the magni-
tude of the jumps, depending on the parameters and the
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data of system, which is also solved. From the practical
point of view, the numerical realization of this version of
the model is very important. This work is devoted to this
task. The numerical realization will allow us to investi-
gate dependence of traveling-wave type quasi-solutions,
and in particular the sizes of gaps (jumps) of solutions,
from a number of parameters of model.

Before passing on to the description of the results of
numerical realization, we will provide a description of
the model and theoretical base.

1. Description of the model

We will consider a model of transportation with an ini-
tial station of departure of cargo i =0, intermediate sta-
tions i =1, 2, ..., m and final station of distribution of
cargo i = m + 1. It is supposed that between two neigh-
boring stations there is an interexchange railway track
where part of cargo can temporarily be stored in special
storage areas. We consider the capacity of such storage
areas unlimited. The movement of cargo happens in one
direction. On any intermediate station with number i
cargo can arrive as from the previous station with num-
ber (i — 1) and the storage area located between them.
Similarly, from any intermediate station with number i
cargo can be sent or to the following station with num-
ber (i +1) or on the storage area located between them.
Work of all stations consists of receiving, processing and
shipping cargo, and stations have a set capacity. Capaci-
ty is understood as the maximum volume of cargo which
can pass through the intermediate station for a single in-
terval of time. Processing of cargo happens in nodes of
stations. At any time, the number of involved nodes at
n-th station is denoted by z (#). In each node during a
unit of time, a single volume of cargo is processed. It is
obvious that the quantity of the involved nodes for pro-
cessing freight at trouble-free operation of the whole
chain of transportation is limited. The maximum num-
ber of such nodes designated through A determines the
capacity of stations.

The organization of similar freight traffic depends on
technologies for receiving, processing and dispatch of
freight. We will describe these technologies.

The first technology for intermediate stations is based
on the established standard rules of interaction of the
neighboring stations. For each station with number 7
there are rules of interaction from previous (i — 1)-th
station and the subsequent (i + 1)-th station. According
to the rule of interaction with the previous station, the
station with number i, depending on the quantity of the
involved nodes on (i — 1)-th station, has to increase or
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reduce the quantity of the involved nodes with a speed
a(z,_, —z;) (i.e. to accept freight from the previous sta-
tion if the quantity of the involved nodes on (i — 1)-th
station is more than on i-th station, or to send to a stor-
age area if the quantity of the involved nodes on (i — 1)-th
station is less than on i-th station). According to the rule
of interaction with the subsequent station, the station
with number i, depending on the quantity of the involved
nodes on (i + 1)-th station, has to reduce or increase the
quantity of the involved nodes with a speed a(z; —z,,,)
(i.e. to send to the following station if the quantity of the
involved nodes on i-th station is more than on (i +1)-th
station, or to accept from a storage area if the quantity of
the involved nodes on i-th station is less than on (i + 1)-th
station).

At the initial station (i =0), the first technology is de-
termined by means of the rule of interaction with the
subsequent station and rules of handover of freight on
it, determined by the function ¢, (¢), depending on time
variable #> 0. We assume that the function ¢,(.) is piece-
wise infinitely differentiable.

The first technology does not account for conditions
of limited throughput capacity of stations. Furthermore,
it does not allow us to use the full potential of stations.
Therefore, along with the first technology, other tech-
nology is also used.

The second technology for intermediate stations allows
us to increase the number of the involved nodes (if it does
not exceed A) or decrease them (if it exceeds A). In this
case, the freight is accepted from a storage area or goes
to a storage area. It follows from determination of the
second technology that the function setting the speed
of change of the number of involved processing nodes
within this technology has the following properties: on
a half-line (— e, 0] identically equal 0, on an interval
(0, zop,) isincreasing, in a point z,, accepts the maximum
value, on a half-line (zap,, + o) is decreasing, in a point
A accepts zero value, and on a half-line is linear. The
schedule of this function is represented in Figure 1.

Zopf A\

Fig. 1. Speed of change of the number of involved processing nodes
at the intermediate station within the second technology
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We assume that function ¢(.) is twice continuously dif-
ferentiable, with regularly limited first and second de-
rivatives. It is obvious that such a function and its deriva-
tive meet Lipschitz's condition with constants L and L,
respectively. We will designate ¢ =—@(A). Parameter
¢> 0 determines the intensity of sending freight from
intermediate stations to storage areas.

For the initial station (i =0), the second technology is
used only for unloading. Therefore, the speed of change
of the number of involved handling nodes at the initial
station within the second technology is described by the
function ¢ (.), depending on the quantity of the involved
nodes at the initial station which schedule is represented
in Figure 2.

Py

)

Fig. 2. Speed of change of the number of involved processing nodes
at the initial station within the second technology

It is obvious that in case the amount of freight on 0-th
station is not exceeding A, only the first technology is
used. We will designate ¢, = —¢,(A). Parameter ¢, > 0
determines the intensity of sending freight from the ini-
tial station to the storage area.

At the final station (i = m + 1), the first technology
is determined by means of the rule of interaction with
the previous station and the rule for apportionment of
freight from it, described by function #,(¢), = 0. We as-
sume that function #,(.) is piecewise continuous. The
second technology for a final station is the same as for
intermediate stations.

For cargo transportation, it is necessary to have an ef-
ficient and simple control system. The amounts of the
processed freight for any planned interval of time at all
stations shall match a certain log of time, single for all
stations. Such a condition can be described in the fol-
lowing way: there is a number 7 > 0, which is not de-
pending on ¢ and i, it that at all i =0, 1, 2, ..., m and
t €]0,+ o) equality is carried out:

() =2,,(t+7).

Thus, taking into account the work of the first and sec-
ond technologies, and also the control systems, accept-
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ance and sending freight will be described by the follow-
ing system of differential equations:

L, =) —az,+az,+@, (), 1€[0,+0), (6)

(O =az_ —2az+az,,+¢(z),

(7

i=1,2,..,mtel[0,+)
z‘m+] (t) = azm - azm+] - l/JZ (t) + q)(zm-ﬂ )?t € [0’ + oo)’ (8)

() =z2,@+71),i=0,12,...,m, t €[0,+00). 9)

The solution of the system of differential equations
(6) — (8), satisfying the condition (9) is called a solution
of traveling-wave type.

2. Theoretical basis of research

In works [8—10] the system (6) — (9) has been inves-
tigated. We will give substantial aspects of this research.

By means of replacement of time ¢ — 7¢ we will re-
write the system (6) — (9) in the form:

%,(1) =T[1h, () —ax, +ax, +@,(x,)],  €[0,+), (10)

X, =1lax, ,—2ax,+ax,,+o(x,)],
1 1 (11)

i=1,2,..,m, t €[0,+o),

Xpa(OD=1lax,—ax,, -, +e(x,, )], 1€[0,+c), (12)

xt)=x,@+1), i=0,1,2,..,m, te[0,+) (13)
where
x[(r>=zf(1), %(r)=¢1(5), @(r)=¢2(5),
T T T

i=0,1,2,..,mm+1, te[0,+0c).

At the initial stage we considered narrowing of system
(10) — (13) on the segment [0,1], i.e. system:

X, (1) =7[h,(t) —ax,+ax,+p,(x,)], te[0,1]  (14)
X, () = Tlax, - 2ax,+ax,, +@(x,)], (15)
i=1,2,..,m, te[0,1]
Xpa(O)=7[ax,—ax, .~ +9(x,.)], 1€[0,1]  (16)
x,(0)=x,,(1), i=0,1,2,..,m (17)

The theorem of existence and uniqueness of the solu-
tion of system (14) — (17) has been proven. According to
the solution {X;(.)},_y,. .., Of system (14) — (17) func-

L, m+1
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tions 1/_11 ), 1;2 ()and {x, (}iZo12....mey ON @ half-line [0, + c0)
have been constructed:

[ x,(®)=Xx,(1), i=0,1,2,...m+1, t€[0,1];
x,(O)=x,_,0-1),i=L2,...m+1,

telk,k+1), k=1,2,...;
B=D) |, @5 =1) =9, =1)

X, (1) =x,(t-D)+

a a
te(k,k+1), k=12,..; (18)
B0 ==+ = [, (3, (1=1) =, (1~ D) (=) +
(042
coon
+—x°(tr )+l/Jl(t—l)+(Po(xo(t_l))_(p(xo(t_l))_

%(r—l)+<oo(x0<r—1)>—qo<xo(r—1>))
a

—®, [xo (t - 1) +
a

te(k,k+1), k=12,..;

| (1) = ax,(t-1)—ax,, (t-1), te (k, k+1), k=1,2, ...

Definition 3. The quasi-solution of system (10)-(13) is
called the set of piecewise strongly absolutely continu-
ous functions {x; ()}, ,._.., With gaps only in points k
=1, 2, ... and almost everywhere satisfying to this sys-
tem.

The lemma is proven according to which the solution
of the boundary value problem (14) — (17), extended to
the half [0,+ o) in the relations (18), is the quasi-solu-
tion of system (10) — (13).

3. Results of numerical
experiments

As was noted, this work is devoted to numerical imple-
mentation of the given model for organizing cargo trans-
portation. We will give the results of research into the nu-
merical solution of the system (10) — (13) describing this
model. In numerical experiments, the number of stations
was equal to 10: the initial station of positioning freight
(i = 0), intermediate stations (i = 1, 2, ..., 8) and final
station of distribution of freight (i = 9). According to the
results given in the previous paragraph, numerical imple-
mentation of system (10) — (13) consists of two stages. At
the first stage, the solution of the system which is restric-
tion of the initial system (10) — (13) on the segment [0, 1],
i.e. the solution of the following system is found:

X,()=T[th,(t)—ax, +ax,+p,(x,)], t[0,1]
x()=1lax,_—2ax+ax, +ox)],
i=12..8, te[0,1]

19)
(20)
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X, (1) = T[axs—axg—zzz(t)+¢(x9)],te [0,1] 21

x0)=x,@0, i=0,12,..,8. (22)

Before passing to the numerical solution of this sys-
tem, it is necessary to define functions ¢(.), zﬁl(t), @(t).
Function ¢(.) on the segment [0, A] is set by means of
a parabola y = —ax” + bx, where a > 0, y(A) = 0 (see Fig-
ure 1). Thus, coefficients of a parabola are connected
by the ratio b =aA. It is obvious that the greater is a,
the greater the intensity of cargo received on the second
technology. We will pass to the choice of functions 1/_11(.)
and 1172 (.). We remind the reader that these functions de-
termine, respectively, intensity of shipping freight at the
initial station and intensity of distribution of freight from
the final station. It is obvious that the intensity of ship-
ping freight at the initial station is subject to seasonality.
Moreover, in order to avoid jams at stations, the cargo
receiving period at the initial station shall be replaced by
the period of more intensive freight shipment with initial
to the following station. Similar reasoning is fair also for
the final station (the distribution period of freight from
a final station is replaced by the period of more inten-
sive receiving of cargo from the previous station). Ow-
ing to the above, in quality 1Zl ()and zzz () periodic func-
tions #,(¢) = ,(¢) = y cos (ot) are used, while amplitude
and the period of functions are model parameters. After
definition of functions @(.), %(t), 1/72(t) we proceed to the
solution of the boundary value problem (19) — (22). The
solution algorithm is as follows.

1. We find the solution of equations (19) — (21) with
initial conditions

x,(0)=A, x,(0)=A, ..., x,(0) = A.

For the solution found {x,(.)}, we calculate the follow-
ing expression:

0 = (x,(0) = X, (1)) "+ (x,(0) = x, (1) + ...+ (%(0) — x,(D)™.

2. For a previously set small value € >0 by means of a
gradient method, we find the solution of the system of
differential equations (19) — (21) with initial conditions
for which the condition O < ¢ is satisfied. On each itera-
tion of a gradient method, the solution of the system of
equations (19) — (21) is found by means of the method
of Runge—Kutta, fourth order. Thus, we receive the so-
Iution of the system (19) — (21) for which the condition
(22) is satisfied with a certain accuracy. We will call such
decisions solutions of the system (19) — (22). At the sec-
ond stage, the solution of the boundary value problem
(19) — (22) continues in (1,+ o) accordance with the re-
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lations (18). As we know from the previous section, as a
result we get the quasi-solution system (10) — (13), i.e.
functions x, (.), satisfying this system and having gaps at
the points k=1, 2, ....

The main purpose of the study — to determine the
form and dynamics of the quasi-solution of the system
(10) — (13) and also to study their dependence on model
parameters @, a, y,®, ¢,, ¢ and 7. Note that all these pa-
rameters are positive. The results of the numerical experi-
ments are presented in the following two propositions.

Proposition 1. Quasi-solutions of system (10) — (13)
satisfy the following restriction

A e <x, (<A +e™,i=0,1,..9, where

A <A+LA,>A-1,(3>0,5,>0. (23)

Thus, according to proposition 1, quasi-solutions of
the system (10) — (13) both from above, and from be-
low are majorized by exponential functions. For exam-
ple, the schedule of one of quasi-solutions of system
(10) — (13) is provided on Figure 3.

This quasi-solution is received at A =10 and the fol-
lowing values of parameters:

16 1
15 — Range 1
14 1 — Range 2
13 — Range 3
19 — Range 4
11 - ﬁ &k — Range 5
Badad. A ﬁ 5" — Range 6
18 | A V ?ﬁf Range 7
8 Range 8
74 Range 9
6 Range 10

Range 1 — x,(.), Range 2 —x,(.), ..., Range 10 — x,(.)

Fig. 3. Quasi-solution schedule of the system
of differential equations (basic case)

a=60,a=0.1,y=5w=27,c,=0.1,c=0.1,7=1. (24)
To see ruptures of functions on schedules, we will give
a small fragment of Figure 3 (a segment [3.5; 5.5], gaps

in points 4 and 5).

As can be seen from Figure 4, the biggest gap at these
points has a function x(.). Further, with increasing num-
bers coordinates quasi-solution breaks are reduced. This
trend remains also in the subsequent integer points. For
comparison, in Figure 5 we will provide histograms of
ruptures of functions x,(.), x,(.), x,(.), x,(.) (histograms
of other functions aren’t provided to avoid encumbering
the figure).

—— Range 1
— Range 2
—— Range 3
—— Range 4
\ —— Range 5
.= — Range 6
~ _ Range7
—— Range 8
—— Range 9
—— Range 10

Range 1 —x,(.), Range 2 —x,(.), ..., Range 10 — x,(.)
Fig. 4. Fragment of the quasi-solution schedule
of system of the differential equations (basic case)

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

= Range 1

Range 2
m Range 3
= Range 4

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0

Range 1 — x,(.), Range 2 — x,(.),
Range 3 — x,(.), Range 4 — x,(.)

Fig. 5. Histograms of gaps (basic case)

For these values of the parameters of inequality (23)
takes the following form:

10.75-e*”'< x,(1) <9.25+€"™, i=0,1,...9.

Parameters f3,, 8, of the functions majorizing quasi-
solutions of the system (10) — (13) depend on the pa-
rameters of this system; therefore, we will designate
them:

/31 = ﬁ] (a3a, V, Cl),CO, C, T)’ ﬁz

= ﬁz (a3 a, V, Cl), c(); C3 T)‘

As a result of numerous experiments, it has been re-
vealed that function f3,(.) is monotone in all parameters
except for the parameter ¢ concerning which it is invari-
able. Function /3,(.) also is monotone in all parameters
except for the parameter a, concerning which it is invari-
able. We will provide more detailed formulation of this
result in the following proposition.

Proposition 2. Functions f3,(.) and 3,(.) have the fol-
lowing properties:

30
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1 a/;u(-) <0, a/;z() <0: 2) 3/;1() >0, a/);;(-) —0:
a a a a
3) a/;l() >0, a/;z(-) 50: 4) a/;l(‘) >0, agz() >0
y y w w
9B () B, () _ . B() _, 9B
2 ac, >0, dc, 6 o 0. o 0.
7 % <0, % <0.

We will give below schedules of quasi-solutions of sys-
tem (10) — (13) in which alternately value of one of pa-
rameters differs from the value given in (24) at invariable
values of other parameters. At the same time value A is
also invariable and equal to 10. Besides, for these quasi-
solutions we will receive estimate (23).

The schedule of the quasi-solution of system (10) —
(13) with the following values of parameters is shown on
Figure 6:

a=85a=0.1,y=5w=2m,c,=0.1,c=0.1, 7=1.

16
5 — Range 1
o — Range 2
b —— Range 3
— Range 4
ﬁ 1 @ — Range 5
, B L {#® — Range6
10 _;va"‘\vf'\vi%yﬁyﬁ%’&%ﬁ%fy\%ﬁ Range 7
g L '\‘? ~ Range 8
8 Range 9
7] Range 10
6

Range 1 —x,(.), Range 2 —x,(.), ..., Range 10 —x,(.)

Fig. 6. Quasi-solution schedule of the system of differential equations
with the increased value of parameter @

We will notice that in comparison with (24), value a is
increased. For these values of the parameters, inequality
(23) takes the following form:

10.86 — "7 < x,(£)<9.29+ ", i =0,1,...9.

The schedule of the quasi-solution of system (10) —
(13) with the following values of parameters is shown on
Figure 7

a=060,a=04,y=5w=2m,c,=0.1,c=0.1,7=1.

In comparison with (24), value a is increased. For
these values of the parameters inequality (23) takes the
following form:

10.88 — "< x.(£) <9.39+ ", i =0,1,..9.

16
15 1 " Range 1
14 4 ~ Range 2
134 ~Range 3
12 ~—Range 4
11 4 —Range 5
10 Range 6
—Range 7
g -
——Range 8
81 Range 9
7 —Range 10
6

Range I —x,(.), Range 2 —x,(.), ..., Range 10 — x,(.)

Fig. 7. Quasi-solution schedule of system of the differential equations
with the increased value of parameter a

The schedule of the quasi-solution of system (10) —
(13) with the following values of parameters is shown on
Figure &

a=60,a=0.1,y=10,w =2m7,c,=0.1,¢c=0.1, 7=1.

In comparison with (24), value y is increased. For
these values of the parameters, inequality (23) takes the
following form:

10.61— "' < x,(r) < 9.63+¢", i=0,1,..9.

—Range 1
—Range 2
——Range 3
—Range 4
—Range 5
Range 6
— Range7
Range 8
Range 9
—Range 10

Range 1 — x,(.), Range 2 —x,(.), ..., Range 10 — x,(.)

Fig. 8. Quasi-solution schedule of the system of differential equations
with the increased value of parameter y

The schedule of the quasi-solution of system (10) —
(13) with the following values of parameters is shown on
Figure 9:

a=60,a=0.1,y=5, w=4m,¢,=0.1,c=0.1,7=1.
In comparison with (24), value o is increased. For

these values of the parameters, inequality (23) takes the
following form:

10.86— "' < x,(1) < 9.2+¢"", i=0,1,..9.
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— Range 1
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— Range 10

15 1

7 — Range 10

Range 1 — x,(.), Range 2 —x,(.), ..., Range 10 — x,(.)
Fig. 9. Quasi-solution schedule of the system
of differential equations with the increased value of parameter

The schedule of the quasi-solution of system (10) —
(13) with the following values of parameters is shown on
Figure 10

a=60,a=0.1,y=5w=2m,¢,=2,¢=0.1, 7=1.

In comparison with (24), value ¢, is increased. For
these values of the parameters, inequality (23) takes the
following form:

10.92— """ < x,(1) <9.26+ €, i=0,1,..9.

16
157 " Range 1
147 " Range2
13 1 ~ Range3
12 ) " Range4
11 A " Range5
10 " Range6
9 ~ Range7
~ Range8
8
7 Range 9
] — Range 10
6

Range 1 — x,(.), Range 2 —x,(.), ..., Range 10 — x,(.)

Fig. 10. Quasi-solution schedule of the system of differential equations
with the increased value of parameter ¢,

The schedule of the quasi-solution of system (10) —
(13) with the following values of parameters is shown on
Figure 11

a=60,a=0.L,y=5w=2m,c,=0.1,c=2, 7=1.
In comparison with (24), value c is increased. For

these values of the parameters, inequality (23) takes the
following form:

10.72- € < x, (1) <9.2+¢"", i=0,1,...9.

Range 1 — x,(.), Range 2 —x,(.), ..., Range 10 — x,(.)

Fig. 11. Quasi-solution schedule of the system of differential equations
with the increased value of parameter ¢

Lastly, the schedule of the quasi-solution of the system
(10) — (13) with the following values of parameters is
shown on Figure 12

a=60,y=5w=2m,a=0.1,¢,=0.1,c=0.1, 7= 4.

In comparison with (24), value 7 is increased. For
these values of the parameters, inequality (23) takes the
following form:

10.79— "™ < x, (1) <9.42+ ", i =0,1,..9.

——Range 1
——Range 2
—— Range 3
——Range 4
——Range 5
—— Range 6
—— Range 7
——Range 8
7 Range 9

6 —— Range 10

Range 1 — x,(.), Range 2 —x,(.), ..., Range 10 — x,(.)

Fig. 12. Quasi-solution schedule of the system of differential equations
with the increased value of parameter ¢

In conclusion, we will pass to the analysis of results
of the following from proposition 2 and having practi-
cal value. It follows from proposition 2 that growth of
quasi-solutions of the system (10) — (13) decreases with
an increase of parameters a and 7, and also with reduc-
tion of parameters y and w. Numerical experiments have
shown that similarly conduct to themselves and ruptures
of quasi-solutions of the system (10) — (13), i.e. they de-
crease with an increase of parameters « and 7 and reduc-
tion of parameters y and w. For example, for comparison
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with Figure 5, we will provide histograms of ruptures of
functions x(.), x,(.), x,(.), x,(.), which are components
of quasi-solutions of the system (10) — (13) with the in-
creased value of parameter a (with 60 to 85) and at in-
variable values of other parameters (Figure 13).

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00 T T T T i

12 3 4 5 6 7 8 9 10

= Range 1
m Range 2
Range 3

m Range 4

Range 1 — x,(.), Range 2 — x,(.),
Range 3 — x,(.), Range 4 — x,(.)

Fig. 13. Histograms of gaps with an increased value of parameter o

We remind the reader that parameters y and w are char-
acteristics of intensity of shipping freight on the initial
station and cannot be operated by the organizer of cargo
transportation unlike parameters o and z. Thus, the or-
ganizer of cargo transportation can effectively reduce the
load of stations, increasing intensity of the movement of
freight traffic (parameter «) and the characteristic of the

control system (parameter 7). However, here it must be
kept in mind that for great values 7z the control system
loses relevance. Thus, the choice of parameter a depends
only on the technical capabilities of the infrastructure of
cargo transportation, and the choice of parameter 7 has to
be reached at the expense of a compromise between tech-
nical capabilities of the infrastructure of cargo transporta-
tion and the relevance of the control system.

Conclusion

This article is devoted to numerical realization of a model
for organizing cargo transportation between two node sta-
tions with a set rule of control. Such a model is described by
a finite-dimensional system of differential equations with
nonlocal linear restrictions (the rule of control). The class
of the solution satisfying nonlocal linear restrictions is ex-
tremely narrow. It results in the need for the “correct” ex-
tension of solutions of the system of differential equations
to a class of quasi-solutions. Based on the theoretical basis
presented in [8—10], it was possible numerically using the
Runge—Kutta method to build these quasi-solutions and
determine their rate of growth. Furthermore, dependence
of the quasi-solutions and, in particular, the sizes of gaps
(jumps) on solutions from a number of the parameters of
the model characterizing a rule of control, and technolo-
gies for transportation of cargo and intensity of shipping
cargo on a node station has been researched. B
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AHHOTAIMA

B crarbe paccMaTpMBaeTCs MOIENb OPraHU3alMK TPY30IIEPEBO30K MEXKIY IBYMS Y3JIOBBIMU CTAHLIMSIMU,
COEMMHEHHBIMM KEJIE3HOMOPOKHOM JTUHUEH, KOTOpast CONEPXKUT ONMPEAeIeHHOE KOJIMUYECTBO MPOMEXYTOYHBIX
craHuuil. JBUKEHWE TPy30II0TOKA OCYILIECTBIISIETCS B OXHOM HampaBjieHUM. Takas cUTyalllusl MOXET MMETh
MeCTO, HallpuMep, B Cliydyae, eCld OfHa M3 Y3JIOBBIX CTAHIIMI PAcIOOXeHa B PETHOHE HOOBIYU CHIPbS ISt
MPEATNPUSATHSI, HAXOMSIIErOCs B IPYTOM PErMOHE U paciiojiararolilero Ipyroi y3aoBoi craHiueir. OpraHusanus
IPY30IIOTOKA OCYIIECTBIISIETCS C TIOMOILBIO Psiia TEXHOJOTUIA. DTHU TEXHOJOTUU ONMPEAESIOT MPAaBUIO TTOIAYN
IPY30B Ha HayaJlbHYIO Y3JIOBYIO CTaHLIMIO, MpaBuja B3aUMOMECTBUS COCEIHUX CTAHLMI, a TakKe MPaBHIO
pacrpee/leHus: py30B ¢ KOHEUHO y3/10B0# cTaHLnu. [Ipoliecc rpy30mnepeBo30K COMPOBOXIAETCS 3adaHHBIM
MpaBWJIOM KOHTPOJs. JIsl TaKoi MOIENu TPeOyeTCsl ONpPENeaUTh BO3MOXHBIE PEXMMBI I'DYy30IEPEBO30OK U
OITMCAaTh UX CBOMCTBA.

JlanHasi Mojelb OIKMCHIBAeTCSI KOHEYHOMEpHOW cucteMoil auddepeHInaNibHbBIX YpaBHEHUM C
HeJIOKaJTbHBIMU JIMHEMHBIMY orpaHndeHusIMU. Kitacc pelreHuil, ynoBIeTBOPSIONINX HeJTOKATbHBIM JIMHETHBIM
OTpaHMYEHUSIM, OKAa3bIBAETCS 4YPE3BBIYAWHO Y3KUM. DTO TPUBOIUT K HEOOXOMMMOCTH <«IIPaBWIHLHOTO»
pacuiMpeHus peleHni cucteMbl fuddepeHInaTbHbBIX YPaBHEHUH 10 Klacca KBa3upelleHU I, OTITNINTETbHOMN
0COOGEHHOCTHIO KOTOPBIX SBJISIETCS HAJIMUMe Pa3pbiBOB B CUeTHOM umcie Touek. C moMombio Metona PyHre—
KyTTa yeTBepTOro mopsiaka ynajroch YUCIEHHO MTOCTPOUTH YKa3aHHbIE KBA3UPEIIeHUS U OTIPEIEeIUTh CKOPOCTh
nx pocrta. OTMETUM, YTO B TEXHUYECKOM TJITaHE OCHOBHASI CIOXHOCTH 3aKJloyajach UMEHHO B IOJyYeHUU
KBa3UpEIIeHN, YIOBIETBOPSIONINX HEJTOKAIHHBIM orpaHndeHusiM. Kpome Toro, mccienoBaHa 3aBUCUMOCTD
KBa3WpeIIeHNWi W, B YACTHOCTU, BEJIWYUH Pa3phIBOB (CKAYKOB) pEIIeHUI OT psima mapaMeTpOB MOIENH,
XapaKTepU3YIOINX MPaBUIO0 KOHTPOJISI, TEXHOJIOTUM TIEPEeBO3KY TPY30B U MHTEHCUBHOCTH MMOJAa4YM TPY30B Ha
Y3JI0OBYIO CTaHIIUIO.

KioueBbie cjioBa: opraHU3aIus Tpy30MepeBo30K, IMHAMUIecKast MOIes b, TuddepeHIIMabHbIe YpaBHEHSI, PEIIEHMSI THUTIA
OeTyIeil BOJIHBI, YACTIeHHAST peaTn3alius.

Iuruposanne: Khachatryan N.K., Akopov A.S. Model for organizing cargo transportation with an initial station
of departure and a final station of cargo distribution // Business Informatics. No. 1 (39). P. 25-35.
DOI: 10.17323/1998-0663.2017.1.25.35.
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