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Abstract

A model for organizing cargo transportation between two node stations connected by a railway line 
which contains a certain number of intermediate stations is considered. The movement of cargo is in 
one direction. Such a situation may occur, for example, if one of the node stations is located in a region 
which produce raw material for manufacturing industry located in another region, and there is another 
node station. The organization of freight traffi  c is performed by means of a number of technologies. These 
technologies determine the rules for taking on cargo at the initial node station, the rules of interaction 
between neighboring stations, as well as the rule of distribution of cargo to the fi nal node stations. The 
process of cargo transportation is followed by the set rule of control. For such a model, one must determine 
possible modes of cargo transportation and describe their properties. 

This model is described by a fi nite-dimensional system of diff erential equations with nonlocal linear 
restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results 
in the need for the “correct” extension of solutions of a system of diff erential equations to a class of quasi-
solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically 
using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their 
rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-
solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of 
quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the 
model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of 
cargo on a node station.
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Introduction

R
esearch has been is devoted to the problem of 

organizing cargo transportation; in particular, it 

is considered in works [1–7]. In [8–10] a mod-

el devoted to studying the process of organizing cargo 

transportation realized through a number of technolo-

gies is investigated. The distinctive feature of this model 

is studying the modes of cargo transportation satisfying 

the set “simple” control system. Several variants of the 

model are considered.

The first version describes transnational transporta-

tion, i.e. transportation without a selected initial station 

of departure and a final station of distribution of cargo. 

This version of the model is given by a countable system 

of differential equations with nonlocal linear restric-

tions:

   , (1)

                 , (2)

where  – the number of the involved nodes at the sta-

tion with number  in timepoint  ; 

 – the characteristic of control.

Definition 1. The family of absolutely continuous 

functions , defined on , It called the deci-

sion of the system of differential equations (1), if almost 

all  functions  satisfy this system.

Solutions of the system of differential equations 

(1), satisfying the condition (2) are called solutions of 

the traveling wave type. The theorem of existence and 

uniqueness of solutions of traveling wave type is prov-

en. From the substantive point of view, this theorem de-

scribes a possible mode of cargo transportation at the 

quantity of the involved nodes recorded in the initial 

time point on a randomly selected station. 

The second version describes transportation with a se-

lected initial station of departure of the cargo. This ver-

sion of the model is given by the countable system of dif-

ferential equations with nonlocal linear constraints:

           (3)

  (4)

            (5)

Apparently, unlike system (1) – (2), the first equa-

tion is allocated here. The function participating in this 

equation describes the intensity of handover of cargo on 

the initial station. As it appeared, the class of solutions 

of system (3) – (5) is extremely narrow. This leads to the 

need to “correct” the extension of the class of solutions 

of the traveling wave type to the class “quasi-travelling” 

wave type.

Definition 2. The family of piecewise absolutely con-

tinuous functions , defined on , it called a 

quasi-solution of thetraveling wave type with character-

istic  for the system (3) – (5), if  almost all  

functions  satisfy the system, and gaps are located at 

the points  

It should be noted that another possible way to expand 

the class of traveling wave type solutions to the class of 

“quasi-traveling” wave type solutions making waves is 

the weakening of the nonlocal linear restrictions (5) (as-

suming implementation of these restrictions with some 

error). However, for these restrictions to define the con-

trol system at cargo transportation in this type of expan-

sion is unacceptable as the control system (5) is the sim-

plest and therefore realized.

The theorem of existence and uniqueness of the 

traveling wave type quasi-solution is proven. As follows 

from definition 2, quasi-solution components have gaps 

in points multiple . This theorem also describes the pos-

sible mode of cargo transportation at the quantity of the 

involved nodes recorded in initial the time point at an 

arbitrary fixed station. However, unlike the previous ver-

sion of the model, this mode of transportation involves a 

sharp change in the number of involved nodes (jumps) in 

time points multiple to the characteristic of the control 

system. Considering the small equipment of intermediate 

stations, a change of number of the involved nodes cannot 

be too big. This leads to the formulation of the problem 

of minimizing the magnitude of the jumps, depending on 

the parameters of the system, which is also solved.

The third version describes transportation between a 

dedicated initial station of departure and final station of 

distribution of cargo. This version of the model describes 

the cargo on the long section of the route between the 

two node stations. Unlike the first and second versions, 

this version of the model is described by a finite number 

of differential equations with nonlocal linear con-

straints. The class of solutions of this system is also very 

narrow, so, here, as well as for system (3) – (5), there 

is an expansion of a class of solutions of traveling-wave 

type to class of solutions of “quasi-traveling” wave type. 

As in the previous case, considering the small equip-

ment of intermediate stations, a change of number of 

the involved nodes cannot be too big. This leads to the 

formulation of the problem of minimizing the magni-

tude of the jumps, depending on the parameters and the 
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data of system, which is also solved. From the practical 

point of view, the numerical realization of this version of 

the model is very important. This work is devoted to this 

task. The numerical realization will allow us to investi-

gate dependence of traveling-wave type quasi-solutions, 

and in particular the sizes of gaps (jumps) of solutions, 

from a number of parameters of model. 

Before passing on to the description of the results of 

numerical realization, we will provide a description of 

the model and theoretical base.

1. Description of the model

We will consider a model of transportation with an ini-

tial station of departure of cargo , intermediate sta-

tions  and final station of distribution of 

cargo i = m + 1. It is supposed that between two neigh-

boring stations there is an interexchange railway track 

where part of cargo can temporarily be stored in special 

storage areas. We consider the capacity of such storage 

areas unlimited. The movement of cargo happens in one 

direction. On any intermediate station with number  

cargo can arrive as from the previous station with num-

ber  and the storage area located between them. 

Similarly, from any intermediate station with number  

cargo can be sent or to the following station with num-

ber  or on the storage area located between them. 

Work of all stations consists of receiving, processing and 

shipping cargo, and stations have a set capacity. Capaci-

ty is understood as the maximum volume of cargo which 

can pass through the intermediate station for a single in-

terval of time. Processing of cargo happens in nodes of 

stations. At any time, the number of involved nodes at 

-th station is denoted by . In each node during a 

unit of time, a single volume of cargo is processed. It is 

obvious that the quantity of the involved nodes for pro-

cessing freight at trouble-free operation of the whole 

chain of transportation is limited. The maximum num-

ber of such nodes designated through  determines the 

capacity of stations.

The organization of similar freight traffic depends on 

technologies for receiving, processing and dispatch of 

freight. We will describe these technologies.

The first technology for intermediate stations is based 

on the established standard rules of interaction of the 

neighboring stations. For each station with number 

there are rules of interaction from previous -th 

station and the subsequent -th station. According 

to the rule of interaction with the previous station, the 

station with number , depending on the quantity of the 

involved nodes on -th station, has to increase or 

reduce the quantity of the involved nodes with a speed 
 

 (i.e. to accept freight from the previous sta-

tion if the quantity of the involved nodes on -th 

station is more than on -th station, or to send to a stor-

age area if the quantity of the involved nodes on -th 

station is less than on -th station). According to the rule 

of interaction with the subsequent station, the station 

with number , depending on the quantity of the involved 

nodes on -th station, has to reduce or increase the 

quantity of the involved nodes with a speed  

(i.e. to send to the following station if the quantity of the 

involved nodes on -th station is more than on -th 

station, or to accept from a storage area if the quantity of 

the involved nodes on -th station is less than on -th 

station).

At the initial station ( ), the first technology is de-

termined by means of the rule of interaction with the 

subsequent station and rules of handover of freight on 

it, determined by the function , depending on time 

variable t  0. We assume that the function  is piece-

wise infinitely differentiable.

The first technology does not account for conditions 

of limited throughput capacity of stations. Furthermore, 

it does not allow us to use the full potential of stations. 

Therefore, along with the first technology, other tech-

nology is also used.

The second technology for intermediate stations allows 

us to increase the number of the involved nodes (if it does 

not exceed ) or decrease them (if it exceeds ). In this 

case, the freight is accepted from a storage area or goes 

to a storage area. It follows from determination of the 

second technology that the function setting the speed 

of change of the number of involved processing nodes 

within this technology has the following properties: on 

a half-line 
 
identically equal 0, on an interval 

(0, ) is increasing, in a point  accepts the maximum 

value, on a half-line (  , + ) is decreasing, in a point 

 accepts zero value, and on a half-line is linear. The 

schedule of this function is represented in Figure 1.

Fig. 1. Speed of change of the number of involved processing nodes 
at the intermediate station within the second technology
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We assume that function (.) is twice continuously dif-

ferentiable, with regularly limited first and second de-

rivatives. It is obvious that such a function and its deriva-

tive meet Lipschitz's condition with constants  and , 

respectively. We will designate . Parameter 

  determines the intensity of sending freight from 

intermediate stations to storage areas.

For the initial station ( ), the second technology is 

used only for unloading. Therefore, the speed of change 

of the number of involved handling nodes at the initial 

station within the second technology is described by the 

function 
0
(.), depending on the quantity of the involved 

nodes at the initial station which schedule is represented 

in Figure 2. 

ance and sending freight will be described by the follow-

ing system of differential equations: 

         (6)

                  (7)

      (8)

       (9)

The solution of the system of differential equations 

(6) – (8), satisfying the condition (9) is called a solution 

of traveling-wave type.

2. Theoretical basis of research

In works [8–10] the system (6) – (9) has been inves-

tigated. We will give substantial aspects of this research.     

By means of replacement of time  we will re-

write the system (6) – (9) in the form:

    (10)

                (11)

 (12)

       (13)   

where

At the initial stage we considered narrowing of system 

(10) – (13) on the segment , i.e. system:     

      (14)

               (15)

 (16)

                (17)

The theorem of existence and uniqueness of the solu-

tion of system (14) – (17) has been proven. According to 

the solution  of system (14) – (17) func-

It is obvious that in case the amount of freight on 0-th 

station is not exceeding , only the first technology is 

used. We will designate . Parameter  

determines the intensity of sending freight from the ini-

tial station to the storage area.

At the final station , the first technology 

is determined by means of the rule of interaction with 

the previous station and the rule for apportionment of 

freight from it, described by function . We as-

sume that function  is piecewise continuous. The 

second technology for a final station is the same as for 

intermediate stations. 

For cargo transportation, it is necessary to have an ef-

ficient and simple control system. The amounts of the 

processed freight for any planned interval of time at all 

stations shall match a certain log of time, single for all 

stations. Such a condition can be described in the fol-

lowing way: there is a number  which is not de-

pending on  and , it that at all i = 0, 1, 2, ..., m and 

 equality is carried out:

Thus, taking into account the work of the first and sec-

ond technologies, and also the control systems, accept-

Fig. 2. Speed of change of the number of involved processing nodes 
at the initial station within the second technology
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tions ,  and  on a half-line  

have been constructed:

Definition 3. The quasi-solution of system (10)-(13) is 

called the set of piecewise strongly absolutely continu-

ous functions  with gaps only in points k 

= 1, 2, ... and almost everywhere satisfying to this sys-

tem.

The lemma is proven according to which the solution 

of the boundary value problem (14) – (17), extended to 

the half   in the relations (18), is the quasi-solu-

tion of system (10) – (13).

3. Results of numerical 

experiments

As was noted, this work is devoted to numerical imple-

mentation of the given model for organizing cargo trans-

portation. We will give the results of research into the nu-

merical solution of the system (10) – (13) describing this 

model. In numerical experiments, the number of stations 

was equal to 10: the initial station of positioning freight 

(i = 0), intermediate stations (i = 1, 2, ..., 8) and final 

station of distribution of freight (i = 9). According to the 

results given in the previous paragraph, numerical imple-

mentation of system (10) – (13) consists of two stages. At 

the first stage, the solution of the system which is restric-

tion of the initial system (10) – (13) on the segment [0, 1], 

i.e. the solution of the following system is found: 

        (19)

               (20)

           (21)

                       (22)

Before passing to the numerical solution of this sys-

tem, it is necessary to define functions . 

Function  on the segment  is set by means of 

a parabola , where  (see Fig-

ure 1). Thus, coefficients of a parabola are connected 

by the ratio . It is obvious that the greater is , 

the greater the intensity of cargo received on the second 

technology. We will pass to the choice of functions  

and . We remind the reader that these functions de-

termine, respectively, intensity of shipping freight at the 

initial station and intensity of distribution of freight from 

the final station. It is obvious that the intensity of ship-

ping freight at the initial station is subject to seasonality. 

Moreover, in order to avoid jams at stations, the cargo 

receiving period at the initial station shall be replaced by 

the period of more intensive freight shipment with initial 

to the following station. Similar reasoning is fair also for 

the final station (the distribution period of freight from 

a final station is replaced by the period of more inten-

sive receiving of cargo from the previous station). Ow-

ing to the above, in quality  and  periodic func-

tions  are used, while amplitude 

and the period of functions are model parameters. After 

definition of functions  we proceed to the 

solution of the boundary value problem (19) – (22). The 

solution algorithm is as follows.

1. We find the solution of equations (19) – (21) with 

initial conditions 

. 

For the solution found  we calculate the follow-

ing expression:

.

2. For a previously set small value  by means of a 

gradient method, we find the solution of the system of 

differential equations (19) – (21) with initial conditions 

for which the condition  is satisfied.  On each itera-

tion of a gradient method, the solution of the system of 

equations (19) – (21) is found by means of the method 

of Runge–Kutta, fourth order. Thus, we receive the so-

lution of the system (19) – (21) for which the condition 

(22) is satisfied with a certain accuracy. We will call such 

decisions solutions of the system (19) – (22). At the sec-

ond stage, the solution of the boundary value problem 

(19) – (22) continues in  accordance with the re-
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lations (18). As we know from the previous section, as a 

result we get the quasi-solution system (10) – (13), i.e. 

functions , satisfying this system and having gaps at 

the points k = 1, 2, .... 

The main purpose of the study – to determine the 

form and dynamics of the quasi-solution of the system 

(10) – (13) and also to study their dependence on model 

parameters  and . Note that all these pa-

rameters are positive. The results of the numerical experi-

ments are presented in the following two propositions.

Proposition 1. Quasi-solutions of system (10) – (13) 

satisfy the following restriction  

          , where

               (23)

Thus, according to proposition 1, quasi-solutions of 

the system (10) – (13) both from above, and from be-

low are majorized by exponential functions. For exam-

ple, the schedule of one of quasi-solutions of system 

(10) – (13) is provided on Figure 3.

This quasi-solution is received at  and the fol-

lowing values of parameters:

    . (24)

To see ruptures of functions on schedules, we will give 

a small fragment of Figure 3 (a segment [3.5; 5.5], gaps 

in points 4 and 5).

As can be seen from Figure 4, the biggest gap at these 

points has a function x
0
(.). Further, with increasing num-

bers coordinates quasi-solution breaks are reduced. This 

trend remains also in the subsequent integer points. For 

comparison, in Figure 5 we will provide histograms of 

ruptures of functions x
0
(.), x

1
(.), x

2
(.), x

3
(.) (histograms 

of other functions aren’t provided to avoid encumbering 

the figure).

Range 1 – x
0
(.),  Range 2 – x

1
(.), …,  Range 10 – x

9
(.)

Fig. 4. Fragment of the quasi-solution schedule 
of system of the differential equations (basic case)

For these values of the parameters of inequality (23) 

takes the following form:

.    

Parameters  of the functions majorizing quasi-

solutions of the system (10) – (13) depend on the pa-

rameters of this system; therefore, we will designate 

them: 

.

As a result of numerous experiments, it has been re-

vealed that function 
 
is monotone in all parameters 

except for the parameter  concerning which it is invari-

able. Function 
 
also is monotone in all parameters 

except for the parameter , concerning which it is invari-

able. We will provide more detailed formulation of this 

result in the following proposition.

Proposition 2. Functions  and 
 
have the fol-

lowing properties:

11.00
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9.60

9.40

9.20

9.00

Range 1 – x
0
(.),  Range 2 – x

1
(.), …,  Range 10 – x

9
(.)

Fig. 3. Quasi-solution schedule of the system 
of differential equations (basic case)
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We will give below schedules of quasi-solutions of sys-

tem (10) – (13) in which alternately value of one of pa-

rameters differs from the value given in (24) at invariable 

values of other parameters. At the same time value 
 
is 

also invariable and equal to 10. Besides, for these quasi-

solutions we will receive estimate (23).  

The schedule of the quasi-solution of system (10) – 

(13) with the following values of parameters is shown on 

Figure 6: 

Range 1 – x
0
(.),  Range 2 – x

1
(.), …,  Range 10 –x

9
(.)

Fig. 6. Quasi-solution schedule of the system of differential equations 
with the increased value of parameter 

We will notice that in comparison with (24), value 
 
is 

increased. For these values of the parameters, inequality 

(23) takes the following form: 

.

The schedule of the quasi-solution of system (10) – 

(13) with the following values of parameters is shown on 

Figure 7: 

In comparison with (24), value  is increased. For 

these values of the parameters inequality (23) takes the 

following form: 

The schedule of the quasi-solution of system (10) – 

(13) with the following values of parameters is shown on 

Figure 8: 

In comparison with (24), value  is increased. For 

these values of the parameters, inequality (23) takes the 

following form:

Range 1 – x
0
(.),  Range 2 – x

1
(.), …,  Range 10 – x

9
(.)

Fig. 7. Quasi-solution schedule of system of the differential equations
with the increased value of parameter 

The schedule of the quasi-solution of system (10) – 

(13) with the following values of parameters is shown on 

Figure 9: 

In comparison with (24), value  is increased. For 

these values of the parameters, inequality (23) takes the 

following form:

Range 1 – x
0
(.),  Range 2 – x

1
(.), …,  Range 10 – x

9
(.)

Fig. 8. Quasi-solution schedule of the system of differential equations 
with the increased value of parameter 
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The schedule of the quasi-solution of system (10) – 

(13) with the following values of parameters is shown on 

Figure 10 : 

In comparison with (24), value  is increased. For 

these values of the parameters, inequality (23) takes the 

following form: 

Lastly, the schedule of the quasi-solution of the system 

(10) – (13) with the following values of parameters is 

shown on Figure 12 : 

In comparison with (24), value  is increased. For 

these values of the parameters, inequality (23) takes the 

following form: 

       

The schedule of the quasi-solution of system (10) – 

(13) with the following values of parameters is shown on 

Figure 11: 

In comparison with (24), value с is increased. For 

these values of the parameters, inequality (23) takes the 

following form:

Range 1 – x
0
(.),  Range 2 – x

1
(.), …,  Range 10 – x

9
(.)

Fig. 10. Quasi-solution schedule of the system of differential equations 
with the increased value of parameter 

Range 1 – x
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(.),  Range 2 – x

1
(.), …,  Range 10 – x

9
(.)

Fig. 11. Quasi-solution schedule of the system of differential equations 
with the increased value of parameter  

Range 1 – x
0
(.),  Range 2 – x

1
(.), …,  Range 10 – x

9
(.)

Fig. 12. Quasi-solution schedule of the system of differential equations 
with the increased value of parameter  

In conclusion, we will pass to the analysis of results 

of the following from proposition 2 and having practi-

cal value. It follows from proposition 2 that growth of 

quasi-solutions of the system (10) – (13) decreases with 

an increase of parameters  and , and  also with reduc-

tion of parameters  and . Numerical experiments have 

shown that similarly conduct to themselves and ruptures 

of quasi-solutions of the system (10) – (13), i.e. they de-

crease with an increase of parameters  and  and reduc-

tion of parameters  and . For example, for comparison 

Range 1 – x
0
(.),  Range 2 – x

1
(.), …,  Range 10 – x

9
(.)

Fig. 9. Quasi-solution schedule of the system 
of differential equations with the increased value of parameter 

Range 1

Range 2

Range 3

Range 4

Range 5

Range 6

Range 7

Range 8

Range 9

Range 10

16

15

14

13

12

11

10

9

8

7

6

Range 1

Range 2

Range 3

Range 4

Range 5

Range 6

Range 7

Range 8

Range 9

Range 10

16

15

14

13

12

11

10

9

8

7

6

Range 1

Range 2

Range 3

Range 4

Range 5

Range 6

Range 7

Range 8

Range 9

Range 10

16

15

14

13

12

11

10

9

8

7

6

Range 1

Range 2

Range 3

Range 4

Range 5

Range 6

Range 7

Range 8

Range 9

Range 10

16

15

14

13

12

11

10

9

8

7

6

MODELING OF SOCIAL AND ECONOMIC SYSTEMS



33
BUSINESS INFORMATICS No. 1(39) – 2017

with Figure 5, we will provide histograms of ruptures of 

functions x
0
(.), x

1
(.), x

2
(.), x

3
(.), which are components 

of quasi-solutions of the system (10) – (13) with the in-

creased value of parameter  (with 60 to 85) and at in-

variable values of other parameters (Figure 13). 

control system (parameter ). However, here it must be 

kept in mind that for great values  the control system 

loses relevance. Thus, the choice of parameter  depends 

only on the technical capabilities of the infrastructure of 

cargo transportation, and the choice of parameter  has to 

be reached at the expense of a compromise between tech-

nical capabilities of the infrastructure of cargo transporta-

tion and the relevance of the control system.  

Conclusion

This article is devoted to numerical realization of a model 

for organizing cargo transportation between two node sta-

tions with a set rule of control. Such a model is described by 

a finite-dimensional system of differential equations with 

nonlocal linear restrictions (the rule of control). The class 

of the solution satisfying nonlocal linear restrictions is ex-

tremely narrow. It results in the need for the “correct” ex-

tension of solutions of the system of differential equations 

to a class of quasi-solutions. Based on the theoretical basis 

presented in [8–10], it was possible numerically using the 

Runge–Kutta method to build these quasi-solutions and 

determine their rate of growth. Furthermore, dependence 

of the quasi-solutions and, in particular, the sizes of gaps 

(jumps) on solutions from a number of the parameters of 

the model characterizing  a rule of control, and technolo-

gies for transportation of cargo and intensity of shipping 

cargo on a node station has been researched. 
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0
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1
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2
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Fig. 13. Histograms of gaps with an increased value of parameter 
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We remind the reader that parameters  and  are char-

acteristics of intensity of shipping freight on the initial 

station and cannot be operated by the organizer of cargo 

transportation unlike parameters  and . Thus, the or-

ganizer of cargo transportation can effectively reduce the 

load of stations, increasing intensity of the movement of 

freight traffic (parameter ) and the characteristic of the 
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Аннотация

В статье рассматривается модель организации грузоперевозок между двумя узловыми станциями, 
соединенными железнодорожной линией, которая содержит определенное количество промежуточных 
станций. Движение грузопотока осуществляется в одном направлении. Такая ситуация может иметь 
место, например, в случае, если одна из узловых станций расположена в регионе добычи сырья для 
предприятия, находящегося в другом регионе и располагающего другой узловой станцией. Организация 
грузопотока осуществляется с помощью ряда технологий. Эти технологии определяют правило подачи 
грузов на начальную узловую станцию, правила взаимодействия соседних станций, а также правило 
распределения грузов с конечной узловой станции. Процесс грузоперевозок сопровождается заданным 
правилом контроля. Для такой модели требуется определить возможные режимы грузоперевозок и 
описать их свойства. 

Данная модель описывается конечномерной системой дифференциальных уравнений с 
нелокальными линейными ограничениями. Класс решений, удовлетворяющих нелокальным линейным 
ограничениям, оказывается чрезвычайно узким. Это приводит к необходимости «правильного» 
расширения решений системы дифференциальных уравнений до класса квазирешений, отличительной 
особенностью которых является наличие разрывов в счетном числе точек. С помощью метода Рунге–
Кутта четвертого порядка удалось численно построить указанные квазирешения и определить скорость 
их роста. Отметим, что в техническом плане основная сложность заключалась именно в получении 
квазирешений, удовлетворяющих нелокальным ограничениям. Кроме того, исследована зависимость 
квазирешений и, в частности, величин разрывов (скачков) решений от ряда параметров модели, 
характеризующих правило контроля, технологии перевозки грузов и интенсивность подачи грузов на 
узловую станцию.

Ключевые слова: организация грузоперевозок, динамическая модель, дифференциальные уравнения, решения типа 

бегущей волны, численная реализация.
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