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Abstract

We present a method for investigating solutions of systems of ordinary differential equations with

polynomial right-hand side. Similar systems are of long-term interest for applications, because many
process models have different physical, biological and economical natures described by these systems. The
standard methods of numerical analysis are usually applied obtaining system solutions with the polynomial
right-hand side, disregarding the specific form of the right-hand side. We suggest a different method starting
from the fact that the right side of the equation appears to be a multidimensional polynomial. The relative
simplicity of the right-hand side of the system under consideration made it possible to construct by this
method approximate analytic solutions in the form of functions not only of time but of the initial conditions
as well. In contrast to the majority of known methods, the latter made it possible in many cases to directly
trace the systematic computational error. The implementation of the method is based on the construction of
a discrete dynamical system along the solutions of the original system with subsequent use of the generalized
Horner’s Scheme. The computation peculiarity of Horner’s Scheme lies in the fact that in many cases the
scheme allows us to reduce the number of machine operations required for computation of the polynomial
in comparison with the ordinary computation process. The second peculiarity of the generalized Horner’s
Scheme lies in the fact that there is a good decomposition of computation process that allows us to make
calculations in parallel on independent nodes. According to computational experiments, this enables us to
reduce computation time hugely even in the simplest cases while retaining required accuracy.
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Introduction

onsider the system of ordinary differential equa-
tions written in the vector form

x = f(x), (1)
where x = (x',...,x") is a real vector function of the real
variable ¢ and f= ( o f ") is a real vector function in

which each element fis a multidimensional polynomial
in the variables x', ..., x".

The system (1) has a special meaning in our days. This
is explained by numerous models of processes of vari-
ous physical, economic and other nature as described by
such systems (e.g., [1—4]). The special significance of
the system is that the strange attractors are quite com-
mon.

As is well known, each attractor is a compact invariant
set (e.g., [1]). The classical general theory of dynamical
systems says that every compact invariant set contains a
compact minimal set (e.g., [5]). Therefore, for under-
standing the structure of strange attractors, constructing
the minimal sets is extremely important.

The problem of constructing minimal sets has been
posed in the general case only in [6]. As is clear from
the results [6], the construction of minimum sets sup-
poses the construction and investigation of the system
(1) solutions on infinite horizon for which purpose we
need to implement the construction of a certain dis-
crete-time system in the line of primary solutions (see
also [7]).

The aim of the present paper is to develop a method
for constructing and investigating solutions of system
(1) in the MathCloud system. The method is based on
a special construction of local solutions of the system
taking into account the fact that f is a multidimension-
al polynomial [7, 8]. In contrast to the majority of the
known methods (e.g. [9—13]), the latter made it possible
in many cases to directly trace the systematic computa-
tional error. Such tracing is extremely important, e.g.,
for studying the equations of chaotic dynamics, because
computation accuracy in this case plays the decisive role
and computations should be performed in rather long
time intervals.

1. Construct local solutions
of the system (1)

First of all, consider the problem of constructing a lo-
cal solution x(7) of system (1) with the initial condition

x(0) = x,. )

34

Acting in the standard way, replace system (1) by the
integral equation

t
x(t)=x0+Jf(x(T))dT (3)
0
To find a solution x(7) of Equation (3), we use the
Picard successive approximation method and write

1

Xyt (t) =X +jf(xn (T))dT'

0

4)

Assume that
x,(1) = x,.

Then
()= x, +_:[f(x0)d1:x0 ()
It follows that equality
x,(t)=x, +j;f(x0 +f(x,) 7)dr=x,+ gtpz‘,. (x,)1'

holds, and 6, is a positive number depending on the pol-
ynomial f and the %, are the corresponding real vector
functions defined as multidimensional polynomial at the
variable x,.

Acting formally by induction, using equation

X+ (t)=xo +_zlv,‘/f/v,f(xo)ti7 %)

where 0, is a positive integer depending only on N and
the polynomial f and the ¥y, are the corresponding real
vector functions defined as multidimensional polynomi-
al at the variable x,.

The question of the convergence of the sequence
(Xy)yen to the solution x(7) requires additional investi-
gation. The answer can be found in Theorem I (the proof
of Theorem 1 is contained in paper [7]).

Theorem 1. Let x, eR be a given point, and let a be
some positive number. Let

m= max | f(x)].

[x—xy|<a
Then, for all values 7> 0 satisfying relation

7<%
M

Hold the following equality

Oy
lim (x (1) =X, =y, (x)1' [ = 0.
i=1

N —>+eo

According to Theorem 1, formula (5) gives approxi-
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mate analytical solutions of system (1) with initial con-
dition (2) defined on [—7, T]. This approximate ana-
lytical solution is a multidimensional polynomial of time
t and vector x;, which determine the initial state of the
system. If the function f is nonlinear, then an instinctive
feature of this representation consists in equality

lim l =0.
N —+oo QN

More than all, equality

lim (0,,,— 0y )= +co

N >+eo

is always executed.

2. Interactive system along solution (1)

Generally speaking, investigation attractors of system
(1), if, of course, they exist, suggests the continuation
of local solutions to the right on a sufficiently large time
interval. In paper [7] one was invited to implement the
construction of discrete dynamical system along solu-
tion x(?).

Let x(7) be the solution of system (1) with the initial
condition (2) defined for all # > 0 and is bounded for
these 7. Fixed real number y satisfies the relation

a=2usup x(t)—x0|. 6)
120
Let
a
T<— 7
" (7

where m is the number satisfying the conditions of Theo-
rem 1.

By g’ we denote the phase flow for which the field f if
the phase velocity field. Then the relation >0

x(t+kT)=g'x(kT), k=0,1,...

holds for all # > 0. One can readily see that, by virtue of
(6), (4), and (7), for te [0, T], the points g'x(kT) lie in
the closed ball

B, (x(kT))={xeR": |x—x(kT)\S%}
2
and hence in the closed ball

B, (xo)={xeR":|x—x0 Sa}.

Therefore, by Theorem I we see that approximation g4
to the operator g’ satisfies equality

Oy .
ghx, =X, + 21/1N,,.(x0)t’.
in1

Now acting as the paper [7] it is not difficult to prove
that it holds.

Theorem 2. Let conditions (6), (7) be satisfied for
some u > 1, and number m satisfies conditions of Theo-
rem 1. Then, for each positive number ¢, there exists a
positive integer N, such that, for N > N_, the inequality

max (g}, &, —gf§0| <e

0<t<T

holds forall §, € B, (x,).

2
Therefore, for all sufficiently small positive numbers T
the operator g’ can always be approximated by an opera-
tor g, with prescribed accuracy e. However, note that the
replacement of g7 by g, is justified only if the sequence

(&n - 8uXy) k=0,1,...
k

lies in the ball B, (x,). This means that number x is a
parameter that permits one to control the systematic
error of calculations.

3. Construct of the minimal sets
of the Lorenz system

Consider the Lorenz system

x=0(y—x),
y=m-y-xz ®
Z=xy-bz,

where o,  and b are positive numbers, which play the
role of system parameters.

For simplicity, we restrict considerations to the follow-
ing case of classical values of parameters:

o=10, r=28, b=8/3.
Set
x(0)=xp, ¥(0)= 3y, 2(0) =z,

and
ghe= (xjv,ij,z;\,), N=12,...,
where ¢ = (x,, ,, z,)- Then, obviously, the relations
X[ =X, Y =Yoo &4 =%
and
x;, =10ty, —101x, + x,,
Yy = —1x,2, — 1y, + 281x,,
XZy = =2.6671z, + 2, + X, Y,
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Here have

X, = =5t"x,z, — 55>y, +10ty, +190¢°x, — 10tx, + x,,

V! = 88891z, — 51,2, — 8.889¢ x, 2, + 6.833°x,2, -
—1x,2, —3.333¢°x,y; +3.3331°x; y, — 0.5 X, y, +140.5¢*y, —
—ty, + y, — 15417 x,, + 281x,,

2 =-3.333%, 3,2, +3.333'x27, — 0.51x2z, +3.555¢7, —
2.66717, +72, —3.3336y2 + 51y +96.667x,y, -
—6.8331°x,y, +1x,¥, —93.3331’x] +141’x; .

It is very difficult to construct the operator gy for N > 3
without special computer programs. For this purpose,
we have used a specially developed software (see Section
4). We cannot cite the regret g with N > 3. For exam-
ple, the operators y/, and z;, contain about 30 000 terms.

The minimal sets of system (8) were constructed for
a wide range of initial conditions. Here, in particular,
consider the construction of the minimal set lying in the
w-limit set Q of the solution with the initial condition

x,=-15.720831, y,=—16.587193, z,=36.091132. (9)

The Figure I represents the projection of an arc of the
orbit L onto the plane xOy, constructed for 7= 0.001 on
the basis of points

T T T
Cr 8NCrnes 8y o -BNCoene
| —
k

with tremendous accuracy

TT T T 20
gy 8N €= &Ny €| <107
—_ -

k

Note that solutions of system (8) are defined and
bounded for > 0. Since € is the unique attractor of sys-
tem (8), it follows that there exists a limit

lim inf | g'q—p|= 0,

t—+e0 pel€

for almost all g € R’[1].

Therefore, it is fair to say that the path L is set by the
desired minimal set to computation error.

4. Horner’s Scheme

As was already mentioned, even in the simplest situa-
tion of Lorenz system we require multiple computations
of a rather complicated multidimensional polynomial
for the local solutions construction. With respect to the
efficient implementation of this procedure, using special
methods is required. For this purpose we have used the
generalized Horner’s Scheme integrated into the Math-
Cloud system [14, 15].

Generally speaking, the description of any version of
the generalized Horner’s Scheme is extremely awkward.
Thus, we will limit ourselves to the situation of four vari-
ables polynomial (see Section 4).

Let’s consider polynomial

p(t,x,y,2) = Za,-jkltixjyk (10)

ijk,d
where a,, —aresome real numbers and ¢, x, yand z — are
real variables. The generalized Horner’s Scheme for the
polynomial (10) can be depicted as:

Fig. 1. The projection onto the plane xOy of an arc of the orbit L near the attractor € of system (8)
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p(tx,y,2)= (. .((bm (x,3,2)t+b,  (x,y,2)1 +

(11
+b, (x,y,z)z‘+...)t+bO (x,»,2),
where
b, (x,,2)=(. .((c,.m (y.2)x+c,,. (n.2)x +
+Cy (MADX+.)x+ 40, (1,2) (12
¢;(».2)=(..(d,,(z)y+d; . (z)y+ 1)
+d,.j,m72(z))y+...)y++d_,.,.0(z)
and
dy (2) = Co(( @ 2+ @ )T +
F )T ) (14)

It is obvious that (12)—(14) scheme is good at paral-
lelizing. According to simulation experiments, the use of
this scheme (in comparison to direct scheme (11)) at the
same level of accuracy makes it possible to essentially
reduce the number of computations even in the simplest
situations.

For the construction of the Lorenz system mini-
mum set precisely (12)—(14) version of the generalized
Horner’s Scheme have been used. A schema of the com-
putation process, using services from the MathCloud
system is performed in the Figure 2. As a result, the time
it takes for the construction of the arc described at the
Figure I falls by tens.

Conclusion

Let’s discuss computation aspects of the suggested meth-
od implementation. Let’s recall that in accordance with the
method any solution x(7) of the system (1) is restored in the
form of variables 7, x, multidimensional polynomial where
x(0) = x, and ¢ is time. Thus, the storage of the solution
obtained comes down to the storage of multidimensional
matrix determining this polynomial and matrix determin-
ing analytical entry of the expression for the error. One can
perform this storage by going through initially all matrix
multiplications, or, if more compact, by remembering a
parent matrix and set of rules for further conversions. In
any case, this storage parallelizes fairly well.

In case of further work with the solution obtained, one
for example may need to calculate a trajectory path at given
x,value at 1 =7, 7,, ..., 7, points. It is obvious that each
evaluation at , instant is independent of others and these
evaluations can be done at independent nodes.

As for the evaluation of the multidimensional polyno-
mial, then in the general case this is an ambitious task. It
is reasonable to use variations of the generalized Horner’s
method to solve the task. There are good grounds to believe
that the appropriate procedure will be good at parallelizing.

In relatively simple cases, it is possible to overcome the
computational complexity using standard methods and to
study complex systems behavior. In the paper, there is an
approximate construction of Lorentz system minimum sets

as an example of implementation of the results obtained. m

Y

Initial data

Construction of discrete
dynamic system

\/

Construction of minimal sets J

Y

A

\

Horner's Scheme

A

Construction of polynomials

\ A

A

Construction of local solutions J

J

Y
MathCloud

Fig. 2. Computer process organization in the MathCloud system
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MATEMATUYECKUWE METOJbI 1 AJITOPUTMbI BUSHEC-UHOOPMATHUKHA

AHHOTAIUA

B cTaTbhe npencraBieH METOI UCCIEAOBAHUS pellIeHUI CUCTeM OOBIKHOBEHHBIX Ar(depeHLIMaTbHbIX YypaBHEHU I
C MOJIMHOMUAJILHOW TpaBoil yacThio. [1omoOHbIe crCTeMBbl TaBHO MPEACTABISIOT AOCTaTOUHO OOJIBIION MHTEpeC
IJIST TIPWJIOKEHMIA, TTOCKOJBKY MHOTHME MOZIEIN IPOLIECCOB Pa3jIuYHBI CBOEH (PM3MYECKOM, OMOIOTMYECKON W,
IJIJaBHBIM 00pa3oM, S5KOHOMMUYECKOI MPUPOIOIA, OMMCHIBAEMOUM TaHHBIMU cucTeMaMU. IS MOJydeHUsT pelleHus
CHCTEM C MOJMHOMMAIBHON MPaBOil YaCThI0 OOBIYHO MCIIOIB3YIOT CTaHAAPTHBIE METOIBI YMCICHHOTO aHaIn3a, He
YUUTHIBasE KOHKPETHBIM BUI TTPaBoOii yacT. MBI TIpe/uiaraeM Apyroil METO, UCIIOIb3YIOIINI TOT (haKT, UTO IpaBast
YacTh ypaBHEHUSI MPEACTABISIET COO0M MHOrOMepHbIM MHorowieH. OTHOCHTEIbHAs IPOCTOTAa TPaBOM 4YacTH
paccMaTpUBaeMOM CHUCTEMbI MO3BOJIMJIA MOCTPOUTh 3TUM METOIOM IPHUOJIKEHHbIE aHAIUTUYECKHE pelIeHUs B
BUIe GYHKIIMI HE TOJIbKO BPEMEHU, HO M HayaJlbHbIX YCIOBUIA. B oTiMure oT G0NbIIMHCTBA U3BECTHBIX METOMOB,
MOCJIeIHEE BO MHOTHX CITydasixX TTO3BOJISIET HEMOCPEACTBEHHO OTCIIEKMBATh CUCTEMATUYECKYIO OIIMOKY BBIYUCIEHUIA.
Peanmuzanust MmeToma ocHOBaHa Ha MOCTPOCHUM MHTEPAKTUBHOM CHCTEMbI BIOJIb PEIICHU MCXOMHON CHCTEMBI C
MOCTICAYIOIINM HCIIOJb30BaHKEeM 00001IeHHO cxeMbl [opHepa. BeranciauTtenbHass 0cOOeHHOCTh cxeMbl [opHepa
COCTOMT B TOM, YTO OHA BO MHOTHX CJTydasiX ITO3BOJISIET COKPATUTh KOJIMYECTBO MAIIIMHHBIX OTIepaIiii, HEOOXOMMMBIX
IIJIS. BBIYMCJIEHUSI MHOTOYIEHA, MO0 CPAaBHEHUIO ¢ OOBIYHBIM BBIYMCIMTEILHBIM IpolieccoM. Bropasi oco6eHHOCTh
00001IeHHOM cxeMbl [opHEpa COCTOUT B TOM, YTO 3[€Ch BBHIYMCIUTEIbHbBIN MPOLECC XOPOIIO JIEKOMIIO3UPYETCs,
YTO TTO3BOJISIET MTPOBOIUTH BBIUMCICHHMS MapayljieIbHO Ha HE3aBUCHMBIX y3iax. Kak Mokas3aau BbIYUCIUTETbHBIE
SKCIEPUMEHTBI, 3TO MO3BOJSIET COKPATUTh BpeMs BBIYMCIICHUS JaXe B MPOCTEHMIINX CIydasX B JECATKHU pa3 MpH
COXpaHEHMH 3aJaHHOM TOYHOCTH.

Kimouessie ciioBa: nuddepeHIIMaabHbIe YpaBHEHUS C TTOIMHOMMAIBLHOM IpaBoil 4acThlo, cxema ['opHepa, MHTepaKTUBHAS
cHCTeMa BIOJIb pellIeHUi MCXOMHOM cucteMsl, cuctreMa MathCloud.
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