
BUSINESS INFORMATICS No. 3(41) – 2017

30

Analysis of the consistency
of enterprise architecture models
using formal verification methods1

E.A. Babkin
Professor, Department of Information Systems and Technology
National Research University Higher School of Economics
Address: 25/12, Bolshaya Pecherskaya Street, Nizhny Novgorod, 603155, Russian Federation
E-mail: eababkin@hse.ru

N.O. Ponomarev
Student, Business Informatics MSc Program
National Research University Higher School of Economics;
Software Engineer, Intel Corporation
Address: 25/12, Bolshaya Pecherskaya Street, Nizhny Novgorod, 603155, Russian Federation
E-mail: nik4nikita@gmail.com

Аbstract

Enterprise architecture design is a complex process which makes it possible to synchronize the
capabilities and needs of business and information technologies (IT). It can be achieved by clarifying
the understanding and formalization of the business processes and the interaction of the elements
of the system through their formal description. The large number of interacting business processes
and enterprise architecture entities raises the question of verifying their correctness. Therefore, it is
necessary to formalize the requirements for architecture and be able to automatically verify them.

In this paper, we propose a method for detecting logical contradictions in enterprise architecture
models based on a model checking approach adopted in the context of business modeling. As an
enterprise architecture description language, we use the modern open and independent ArchiMate
standard. Developed by The Open Group, the standard provides a general specifi cation for business
processes, organizational structures, information fl ows, IT-systems and the technical infrastructure
description of the enterprise. As a verifi er, the language and tools of the MIT Alloy Analyzer system
were chosen; they facilitate analysis of model constraints in terms of relational logic by automatically
generating structures that satisfy the requirements of a logical model.

In this paper, we propose to simplify and automate the process of specifi cation and verifi cation of
enterprise architecture domain models using Archi - the visual editor for ArchiMate models. We have
developed the editor plug-in which translates the enterprise architecture models into the language of
the MIT Alloy Analyzer system and uses the meta-model of the ArchiMate specifi cation as the basis
for constructing specifi c domain models. The proposed method and software solutions have been
tested using the ArciSurance case and their enterprise architecture model.

1 The research was carried out with financial support of Russian Fund of Basic Research No. 16-06-00184
A “Development and investigation models of online-discussion based on materials of political news”

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

31

Key words: enterprise architecture, ArchiMate, Alloy Analyzer, verification, consistency analysis,

formal methods.

Citation: Babkin E.A., Ponomarev N.O. (2017) Analysis of the consistency of enterprise architecture models

using formal verification methods. Business Informatics, no. 3 (41), pp. 30–40.

DOI: 10.17323/1998-0663.2017.3.30.40.

Introduction

G
artner defines the term “enterprise

architecture” as a discipline for proac-

tive and comprehensive response to a

destructive force by identifying, analyzing, and

making changes in the desired direction of vision

and business results [1]. Enterprise architec-

ture helps managers to find the best strategies for

organizational development with respect to the

information systems on which it strongly depends

nowadays. However, in the process of transforma-

tion and gradual complication of the architec-

ture, a serious problem is the lack of any practical

opportunity to carry out “manual testing” of the

model according to previously formulated require-

ments. Such testing is known as verification [2, 3].

In this paper, a general approach of formal

verification is developed using the principles

of model checking applied to the enterprise

architecture. In this case, the required proper-

ties of the model are expressed by formulas of a

certain dialect of formal logic, and the consist-

ency checks are reduced to an exhaustive anal-

ysis of the entire space of its states [4]. In com-

parison with other approaches, this method

has two significant advantages. It can be fully

automated, and its use does not require that the

business analyst should possess special knowl-

edge in the field of mathematical logic and the

theory of proofs of theorems. The paper pro-

poses a new method for detecting logical con-

tradictions in enterprise architecture models

based on formal requirements. The formal ver-

ification of the architecture, as well as its busi-

ness processes, should provide an opportunity

to build a more reliable architecture.

The object of the study is the well-known

case of the Open Group – the architecture of

the insurance company ArchiSurance [5]. The

subject of the study is the logical consistency of

the main elements of the architecture, business

processes and services of this enterprise. As the

language of the enterprise architecture descrip-

tion, a modern, open and free language –

ArchiMate is used in the work [6]. This stand-

ard provides a general specification for the

description, construction and operation of

business processes, organizational structures,

information flows, IT systems and the techni-

cal infrastructure of the enterprise.

As a verification tool, the language and logic

of the Alloy Analyzer system (http://alloy.mit.

edu/alloy/) [7] is selected. The tool allows you

to analyze the limitations of the model in terms

of relational logic by automatically generating

structures that meet the requirements of the

logical model.

The authors believe that the application of

formal methods has the greatest effect in the

case of close integration with the software envi-

ronment for modeling the enterprise archi-

tecture. The developed integrated software

solution in this case allows you to automate

the formalization process of the architecture

model and its verification. Following this prin-

ciple, within the framework of this research,

it is necessary to develop a meta-model of the

ArchiMate specification on the basis of which

a user model will be built in a certain modeling

environment.

In this article, the results are described as

follows. Section 1 outlines the main problems

of building an enterprise architecture and the

specifics of the ArchiMate language. Section

2 shows the principle of model verification.

Section 3 is devoted to the analysis of avail-

able verification tools, here the details of the

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

32

language used and the logic of the MIT Alloy

Analyzer system are described in more detail.

Section 4 presents the main results of the crea-

tion of the ArhiMate meta-model, and Section

5 describes the proposed general algorithm for

converting the model from ArchiMate to the

MIT Alloy Analyzer language construct. Sec-

tion 6 describes the process of creating a formal

domain model. Section 7 contains the results

of the verification of the enterprise architec-

ture view example based on the proposed algo-

rithm. Finally, section 8 focuses on the details

of integrating the presented approach into the

Archi modeling tool. The Conclusion sums

up the results and determines paths for further

research.

1. Enterprise architecture

and the problems of its construction

In practice, the enterprise architecture is usu-

ally developed because some stakeholders have

certain doubts about the functioning of busi-

ness and IT systems. The role of the architect

of the enterprise is to eliminate these problems

by defining and specifying the requirements of

the stakeholders, developing architectural pres-

entations that show how the problems will be

solved taking into account the requirements

and trade-offs that need to be coordinated with

the potentially conflicting interests of the par-

ties and, in the end, synchronize the business

opportunities and needs and IT [6, 8]. The solu-

tion to this problem is achieved by clarifying the

understanding and formalization of the descrip-

tion of business processes and the interaction of

the elements of the system through their formal

description.

As a language for describing the enterprise

architecture, this work uses the modern, open

and independent language of ArchiMate 2.1.

Its applicability and popularity is confirmed by

a large number of certified organizations in the

world (4,314) (http://www.togaf.info/archimate-

visualmap.html), and the number of partici-

pants in the annual ArchiMate Forum reaches

121 (http://reports.opengroup.org/membership_

report_archimate_forum.pdf). There are such

famous organizations among them as Boeing,

Dell, IBM, Philips and many others. This lan-

guage allows a business analyst to represent the

architecture in the form of a set of views that,

depending on the needs, can only include ele-

ments on one level or can show vertical relation-

ships between levels.

The levels include:

 a business level that offers products and

services to external customers;

 the level of the application that supports the

business layer with application services imple-

mented by software applications;

 a technological level that provides the infra-

structure services necessary to support software

systems.

Aspects:

 the aspect of the active structure is various

components that reflect actual behavior, i.e.

“subjects” of activity;

 the aspect of behavior represents processes,

functions, events performed by subjects;

 The aspect of a passive structure represents

objects (physical or informational) on which

behavior is performed.

2. Construction and verification of models

The presence of a large number of interact-

ing business processes and enterprise architec-

ture entities in the ArchiMate models raises the

task of verifying their correctness. This task can

be performed using the model checking method.

This is a method of verifying that a given logical

formula is satisfied on a given formal model of

the system, that is, it takes a true value [9].

The method includes several stages: mode-

ling, specification and verification. The first task

is to bring the projected architecture model to

a formal form that is acceptable for the tools of

verification of program models. At the stage of

the specification, it is necessary to formulate

the properties that the designed model of the

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

33

enterprise architecture must have in the lan-

guage of formal logic.

Verification of the model can show whether

the projected system corresponds to a given

formal specification, but to determine whether

the given specification covers all the properties

of the system is not possible. The verification

phase, ideally, should be done automatically,

but in practice, human intervention is most

often needed. In the case of a negative verifi-

cation result, a counter-example will be gener-

ated that will allow the user to track where the

error occurred and fix it. It is also possible that

the formal form of the system or its require-

ments have been described incorrectly. The

result of verification should also help to iden-

tify these problems [10].

3. Comparative analysis

of verification tools

In the course of the work, the most popular

languages of modeling and analysis of abstrac-

tions were considered: B [11], OCL [12], VDM

[13], Z [14] and Alloy [7]. All of them are able

to describe any complex structure in a concise

and abstract form, and each has an active com-

munity of users and researchers.

Z. Language Z was first developed in 1977

by Jean-Raymond Abrial at Oxford University

and is based on logic and set theory. One of the

advantages of Z is that it has a rich mathemati-

cal notation, making it an expressive language.

A clear style of computational notation makes

it possible to maintain many different idioms.

However, the automatic proof of the theorems

in Z is bounded. It is automated only to a certain

extent, and complex proofs often require guid-

ance from an experienced user.

OCL. Object constraint language (OCL) is

the UML constraint language developed at IBM

and ObjecTime Limited and added to the UML

in 1997, which was originally developed as the

annotation language for UML class diagrams.

OCL is based on the logic of predicates of the

first order, but uses a syntax similar to program-

ming languages, and is very closely related to the

UML syntax. OCL allows you to mix declarative

elements and elements of operations. However,

this language is too implementation-oriented and

therefore not suitable for conceptual modeling.

VDM. VDM (Vienna Development Method)

is a set of methods for the development of com-

puter systems. It originated from IBM's lab in the

mid-1970s and was developed by Cliff Jones and

Deans Bj rner. However, all existing tools do not

provide a fully automatic analysis in the style of

the model check. VDM supports an object-ori-

ented paradigm and parallelism. Although this is

one of the first formal methods of developing IT

systems, it has been improved, standardized and

is still widely used in the industry.

B. Language B was developed by Jean-

Raymond Abrial, one of the creators of Z. It

includes the language and method of obtain-

ing implementations from abstract models by

stage-by-stage processing. The specification

language, Abstract Machine Notation (AMN),

reflects its essence in the title: the system for the

language is considered (as in VDM and Z) as

a finite state machine with operations over the

global state. Starting with a very abstract autom-

aton, the details are added one layer at a time

until an automaton is obtained that can be trans-

lated directly into the code. However, compared

to the same Z, B is a lower-level language, simi-

lar to an abstract programming language, and is

more focused on refinement of code, rather than

on system specifications.

Alloy. MIT Alloy Analyzer, developed at the

Massachusetts Institute of Technology under the

leadership of Daniel Jackson, allows us to iden-

tify and detect contradictions in the projected

models of systems.

Alloy is a language of structural modeling

based on first-order logic for expressing com-

plex structural constraints and behavior. The

Alloy language derives from the Z specification

language and Tarski’s relational calculi, treating

relationships as the main unit of analysis, and

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

34

uses the relational composition as a powerful

operator for combining various structured data.

MIT Alloy Analyzer is a tool for analyzing

models written on Alloy. It supports two types of

automatic analysis: searching for an entity that

satisfies the constraint, and searching for a coun-

ter-example for the given model judgments.

To limit the size of the search, the scope func-

tion is used; this fixes the number of entities and

counter-examples analyzed by this command.

Alloy analyzes the limitations of the model and

selects the structures that satisfy them. Struc-

tures are displayed graphically, and their appear-

ance can be adjusted manually.

During the assessment, the language Alloy was

chosen. It is a full-fledged structured declarative

modeling language that can express all sorts of

complex structural constraints, reflect the logic of

model behavior and conduct automatic analysis.

4. Meta-modeling

To find the contradictions in the enterprise

architecture models using the MIT Alloy Ana-

lyzer tool, we must create a meta-model of the

ArchiMate specification, on the basis of which

specific domain models will be constructed later.

A meta-model is a kind of language model that

captures its basic properties, language concepts

and semantics [4].

The core of the developed meta-model contains

several key entities of the ArchiMate 2.1 specifi-

cation common to all levels of representations.

From them, all other elements on each level of

the language are inherited and expanded by their

properties. The keyword “abstract” of the Alloy

language emphasizes the signature property that

this entity does not include elements outside its

extensions. In the proposed meta-mode architec-

ture, all the signatures of the formal model of the

system extend the essence of Element.

Graphically, the corresponding fragment of

the upper level meta-model ArchiMate is shown

in Figure 1.

Having defined all the necessary basic enti-

ties, we expand the hierarchy of the meta-model

towards the business level, which reflects all the

entities and links from the ArchiMate 2.1 speci-

fication2.

Further, by the same principle, we set the

meta-model of the application level in the Alloy

language from the ArchiMate 2.1 specification3.

In this case, the functionality of some types is

similar, for example, ApplicationFunction and

ApplicationInteraction. In order not to dupli-

cate the links and code of the model, we select

a base class with all common types of commu-

nication and add its functionality for each type.

The last level of the meta-model is the tech-

nology level. It is described by analogy with pre-

vious levels in accordance with the specifica-

tion ArchiMate 2.1 in the language Alloy4. Thus,

the meta-model architecture has a hierarchical

ActiveSctructureElement BehaviourElement PassiveStructureElementInterface Service

aggregates

Fig. 1. Graphical representation of the top-level meta-model AcrhiMate

2 Graphical representation of the meta-model is available at: https://goo.gl/ZLr4Qv
3 Graphical representation of the meta-model is available at: https://goo.gl/J9TTHX
4 Graphical representation of the meta-model is available at: https://goo.gl/Yo44Dw

Element

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

35

structure: there is an upper common layer from

which three ArchiMate level modules are inher-

ited. These, in turn, will be used by the entities

of the user case.

5. Model transformation

algorithm

Modeling of the entities of the subject domain

is completely based on the entities of the cre-

ated meta-model [4, 10]. Therefore, before

describing the formal architecture model, you

need to import the module of the developed

ArchiMate specification meta-model with the

Alloy command “open ArchimateMetaModel”.

The algorithm for converting from ArchiMate

to Alloy is proposed as follows. Each entity of

the view model is transformed into a signature

with an extension corresponding to the type of

the entity. In the signature name, spaces are

replaced with a lower slash, and uppercase let-

ters are replaced with the corresponding lower-

case letters. Thus, a unique name is created for

the signature. Connections that come from the

essence are transformed into limitations (facts)

of the signature. If the entity does not have any

relationships that are described in the signature

of the meta-model from which it is inherited,

then the constraint for this relationship is set

to ”none”, that is, it forbids creating a coun-

terexample with this connection when verify-

ing (Table 1).

Table 1.
Displaying entities ArchiMate in Alloy

ArchiMate Alloy

Model elements
The signature (sig “name”) with
an extension (extends) the entity

type (ex. BusinessFunction)

Сommunication
The list of restrictions (fact)
for a particular signature.

6. Creating a formal model

of the subject field

As a verification case, consider a classic

example designed to illustrate the use of the

ArchiMate modeling language in the context

of the TOGAF structure. It describes the com-

pany’s basic architecture, as well as a number

of change scenarios [5].

The case concerns the insurance company

ArchiSurance, which was formed as a result

of the merger of three previously independent

companies:

 Home & Away (homeowners and travel

insurance);

 PRO-FIT (auto insurance);

 Legally Yours (insurance of legal expenses).

At present, the company consists of three

divisions with the same names and headquar-

ters as their independent predecessors.

ArchiSurance was created to use the syn-

ergy effect between the three organizations

to control their costs, maintain customer sat-

isfaction and invest in new technologies. The

new company offers all insurance products of

the three companies that were merged, and

its organizational structure looks like this

(Figure 2).

To completely cover all aspects of the enter-

prise architecture on one diagram – the task is

not simple and voluminous. More often, the

user is only interested in a particular aspect of

architecture. Therefore, in ArchiMate there is

a concept of “representation”. This is a kind of

point of view that allows you to work flexibly in

a common architecture, focusing on important

aspects, both individual and in a bunch of dif-

ferent levels.

In this paper, we will consider the multi-

layered and most general representation of the

ArchiSurance architecture, divided into three

levels according to the ArchiMate specification5.

5 Graphical representation of the meta-model is available at: https://goo.gl/XdvNL

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

36

In accordance with the transformation algo-

rithm described earlier, we obtain a model in

the language of Alloy for subsequent formal

analysis. The model consists of 67 signatures

and, accordingly, of the same number of facts.

Every fact has from zero to six constraints on

connections.

7. Determination of the formal

requirements of domain and verification

in the MIT Alloy Analyzer

At the architecture design stage, the prop-

erties that the future enterprise architecture

model should have are formulated. One of

these properties is the following statement:

“Are there any application components or

their functionality that use data, but do not

have access to the technology services for their

extraction?”

To conduct verification, it is necessary to

describe this statement in the language of

Alloy’s formal logic, and to determine the scope

of the search. It is necessary that the search for

a solution be carried out with all the presenta-

tion entities, so the query is supplemented with

a list of all the elements of the model with the

keyword “exactly”.

When starting the search for a counter-exam-

ple for a given judgment of the model, a signifi-

cant role is played by scaffolding. Often quan-

tified formulas can be reduced to equivalent

formulas without the use of quantifiers. This

abbreviation is called scolemization and is based

on the introduction of one or more Skolem con-

stants or functions that fix the limitation of the

quantitative formula by their values.

In this example, the MIT Alloy Analyzer

finds a counter example for a given restric-

tion and assigns the app_comp Skolem rela-

tion of the ApplicationComponent type to the

name “$DataAccess_app_comp” for the exist-

ing “Policy Data Management” entity, and

the app_functof the ApplicationFunction type

is named “$DataAccess_app_funct” for the

existing “Create Policy” entity. Thus, in our

example, two entities are found that do not

meet the specified formal requirements (Figu-

res 3 and 4).

After a negative verification result, there are

two possible solutions to the problem: chang-

ing the current architecture or formal require-

ments. If the formal requirements are deter-

mined by the stakeholders and, therefore, are

not subject to adjustment, then the architec-

ture of the enterprise needs to be reconstructed

until verification yields a positive result.

8. Developed integration

approach for Archi

One of the main goals of this work is the

development of a software tool that would

automate part of the verification process of

Fig. 2. The organizational structure of the company ArciSurance

ArchiSurance

Back Office

Front Office

Document Processing CCS

Finance Product Development HRM

Home & Away Car Legal Aid

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

37

Fi
g.

 3
. A

rc
hi

S
ur

an
ce

 c
as

e:
 T

he
 r

es
ul

t o
f t

he
 v

er
ifi

ca
tio

n
of

 th
e

pr
es

en
ta

tio
n

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

38

ArchiMate models and make the approach of

testing models in the field of business modeling

more accessible. As a software platform, the

popular Archi editor has been selected. This is

a free cross-platform open source tool for vis-

ual modeling and design of ArchiMate models

developed on the Eclipse EMF platform and

extensible with custom plug-ins.

In this paper, a plug-in was developed for the

visual editor Archi which supports the auto-

matic transformation of the enterprise archi-

tecture view into the Alloy language (Figure 5).

The plugin is written in Java. The design of

the solution contains three main classes: the

logic of parsing and model transformation,

the implementation of the user interface and

auxiliary methods for converting strings. The

transformation logic is encapsulated in the

Alloy Exporter class, and the public transform-

Model method takes an object that implements

IArchimateModel interface and creates a tem-

porary CaseExample.als file into which the

converted model is written. The input interface

for Alloy commands is written using the Swing

library. The amount of code due to the re-use

of Alloy libraries is 546 lines (https://github.

com/nik-ponomarev/archimate2alloy).

After designing a multilevel architecture of

the ArchiSurance enterprise, the dialog of

the verification window in Archi is opened by

selecting “File Export Model to Alloy

Format” from the context menu.

Fig. 4. ArchiSurance case: Found entities that contradict the given condition (in the box)

insurance_request_data

damage_claim_data

insurance_request_data
calculate_risk

store_policy

policy_data_management ($DataAccess_app_comp)aggregates accesses

triggers

triggers

Create_policy ($DataAccess_app_funct)

triggers

calculate_premium

accesses

accesses

accesses

aggregates

aggregates

aggregates

aggregates

accesses

claim_data_management

Fig. 5. Scheme of verification toolkit

Archi

Verification
results

ArchiMate
model

Alloy Analyzer

Formal requirements

Model view transformation

User

Transformation
and verification

plug-in

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

39

Next, there appears an interface for enter-

ing formal requirements for the architecture

in the language Alloy, as well as commands

for launching verification, where you need to

determine the coverage of the search. At this

stage of implementation, it is possible to check

only one statement per launch.

The “Use full scope” option means that all

the entities of the model must participate in

the verification, each in a single instance. If the

user needs to set his own type of coverage, then

there is the option “Custom scope”. The “Find

solution” button starts the verification mecha-

nism.

In the case of a negative verification result, in

the presence of skolemized structures, entities

that do not satisfy the query condition will be

painted red. In the absence of these variables,

all elements of the model will be painted in red,

which will be generated by Alloy Analyzer as a

counter-example. If no counter-examples are

found, then the original model satisfies formal

requirements. In this case, the corresponding

window with the message “No example/coun-

ter-example found” will be displayed.

In our example, the plugin found two appli-

cation-level components that did not satisfy

the constraint condition, and colored them in

red. These are Policy Data Management and

Create Policy components that use client data

in the current architecture, but do not have

access to their receipt from database services of

the technological level. In this regard, it is nec-

essary to revise the logic of the current archi-

tecture.

The proposed approach to model test-

ing allows to identify errors that are not just

related to the incorrect display of the specifi-

cation, namely errors at the level of the archi-

tecture logic of the enterprise architecture and

the behavior of business processes. It should be

noted that it is not possible to carry out such

verification manually with the increase in the

size of models, which again confirms the prac-

tical value of this tool.

Conclusion

In this paper, the problem of automatic ver-

ification of enterprise architecture models in

ArhiMate language is investigated. As a tool

for the model checking method, the relational

logic tool and the MIT Alloy Analyzer mod-

eling system were used.

The idea of the work is to develop a solution

that is tightly integrated with the actively used

in practice Archi modeling tool to extract all

the elements from the architecture view, and

then completely automatically create a formal

model in the Alloy language and conduct ver-

ification through MIT Alloy Analyzer. Verifi-

cation is based on the projected meta-mode of

the ArchiMate specification in the Alloy lan-

guage, which describes the main entities, the

relationships between them, and other lan-

guage restrictions. Specification of formal

requirements in the form of facts, assertions,

predicate and functions can be entered by the

user in a separate menu, specifying options for

restricting the search. The work also discusses

the methods for transforming the model and

the requirements description rules used in the

implemented software.

Finally, the applied nature of the method is

presented in the ArchiSurance case – verifi-

cation of its generalized multi-layered rep-

resentation of the enterprise architecture. In

addition, the work describes the mechanism

for displaying verification results in the Archi

modeling tool, which allows you to better dis-

play the principles of the enterprise’s function-

ing.

Based on the work done, we can conclude

that the mechanism of logical validation for the

architecture models of the company ArchiMate

is applicable. This method is most important

for models with a large number of elements and

connections between them, given that manual

verification is not possible. The introduction of

a formal description of the enterprise architec-

ture, its business processes, and requirements

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

BUSINESS INFORMATICS No. 3(41) – 2017

40

will allow us to build quality management sys-

tems of the company, to solve the problem of

building an effective management structure, to

optimize processes based on key indicators.

In the future, this work will be improved in the

direction of implementation of verification on

models with the help of LTL/CTL logics. Fur-

ther development of the suggested approaches

will allow us to use formal analysis methods for

a broad class of the models, including the mod-

els of communication of autonomous agents in

the framework of DEMO methodology.

References

1.0 James G.A., Handler R.A., Lapkin A., Gall N. (2005) Gartner enterprise architecture framework:

Evolution 2005. October 25, 2005. Gartner ID: G00130855.

2.0 Clarke E., Grumberg O., Peled D. (1999) Model checking. MIT Press.

3.0 Korotkov A. (2013) Arkhitektura predpriyatiya. Kak zastavit’ IT rabotat’ na vashu kompaniyu [Enterprise

architecture. How to force IT to work in favor of your company]. Available at: http://andrey-korotkov.

ru/wp-content/uploads/2013/02/andrey-korotkov.ru_Enterprise_architecture.pdf (accessed 16 March

2017) (in Russian).

4.0 Clark T., Sammut P., Willans J. (2008) Applied meta-modeling: A foundation for language driven

development. Ceteva.

5.0 Jonkers H., Band I., Quartel D. (2012) The ArchiSurance case study. White paper. The Open Group.

6.0 The Open Group (2013) Archimate 2.1 Specificattion. Open Group Standard. Zaltbommel:

Van Haren Publishing. Available at: https://www.vanharen.net/Samplefiles/9789401800037SMPL.pdf

(accessed 16 March 2017).

7.0 Jackson D. (2006) Software abstractions: Logic, language and analysis. MIT Press.

8.0 Kudryavtsev D.V., Arzumanyan M.Y., Grigoriev L.Y. (2014) Tekhnologii biznes-inzhiniringa

[Technologies of business engineering]. St. Petersburg, Polytechnic University (in Russian).

9.0 Karpov Y.G. (2009) Model checking. Verifikatsiya parallel’nykh i raspredelennykh programmnykh sistem

[Model checking. Verification of parallel and distributed program systems]. St. Petersburg, BHV-

Petersburg (in Russian).

10. Szwed P. (2015) Verification of ArchiMate behavioral elements by model checking. Proceedings

of the 14th IFIP International Conference on Computer Information Systems and Industrial Management
(CISIM 2015). Warsaw, Poland, 24-26 September 2015, pp. 132–144.

11. Lano K. (2012) The B language and method: A guide to practical formal development. Springer Science &

Business Media.

12. Warmer J.B., Kleppe A.G. (1998) The object constraint language: Precise modeling with UML.

Addison-Wesley.

13. Fitzgerald J.S., Larsen P.G., Verhoef M. (2008) Vienna development method. Wiley encyclopedia of
computer science and engineering. John Wiley & Sons.

14. Spivey J.M., Abrial J.R. (1992) The Z notation. Hemel Hempstead: Prentice Hall.

INFORMATION SYSTEMS AND TECHNOLOGIES IN BUSINESS

