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Аbstract

This article is devoted to the construction and research of a model for organizing cargo 
transportation between two node stations connected by a railway line which contains a certain 
number of intermediate stations. The organization of freight traffi  c is facilitated by a number of 
technologies. These technologies determine the rules for taking on cargo at the initial node station, 
the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to 
the fi nal node stations. The process of cargo transportation is accompanied by the set rule of control 
consisting in measuring the volumes of goods transported at neighboring stations with a single time 
lag. For such a model, one must determine possible modes of cargo transportation and describe 
their properties. Traffi  c fl ow is described by a fi nite-diff erence analog of the nonlinear parabolic 
equation. The control system is set by nonlocal restrictions, which distinguishes the solutions of 
traveling wave type. The class of such solutions is extremely narrow. This results in the need for the 
“correct” extension of a class of solutions of the traveling wave type to a class of quasi-solutions of 
the traveling wave type. One type of expansion presupposes assumptions of discontinuous solutions 
of the traveling wave type; the second type allows for violations in a small control system. An 
essential lack of discontinuous solutions is their limitlessness. In this work, we investigate quasi-
solutions obtained with the help of a second type of extension. The distinctive feature of such quasi-
solutions is the assumption of feasibility of not local restrictions with the set error. The question 
of the limitation of such quasi-solutions is investigated. Using computer model implementation 
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we investigate the dependence of the error in the performance of nonlocal restrictions on model 
parameters, which are the characteristics of the technologies used to carry out the cargo fl ow.
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Introduction

O
ne of the key industries of any state 

is transport. One can distinguish 

among the main objectives of trans-

port the following two: planning of transporta-

tion and organization of the process of trans-

portation. For such an extensive territory as 

Russia, the second task becomes especially 

relevant. The set of research is devoted to the 

problem of organizing cargo transportation, 

which in particular, is considered in [1–7]. In 

[8–10] the model, an investigation is made of 

the organization of cargo transportation on the 

extended right of way with a large number of 

intermediate stations through which freight 

traffic passes. It is supposed that between two 

neighboring stations there is an interexchange 

railway track where part of cargo can tempo-

rarily be stored in special storage areas. We 

consider the capacity of such storage areas to 

be unlimited. The movement of cargo happens 

in one direction. The organization of freight 

traffic is carried out by means of two technolo-

gies. The first technology sets the rules for the 

interaction of neighboring stations, and the 

second – the rules for the interaction of sta-

tions with neighboring storage areas. One of 

the tasks of the second technology is to ensure 

uninterrupted cargo flow. A detailed descrip-

tion of these technologies is given in [8]. 

For cargo transportation, a simple con-

trol system is used. The amounts of processed 

freight for any planned interval of time at all 

stations should match a certain log of time, 

the same for all stations. Several variants of 

the model are considered. One of the variants 

of the model describes cargo transportation 

between two node stations and is given by the 

following system of differential equations with 

nonlocal linear restrictions [8]:  

   (1)

                       (2)

      (3)

   (4) 

where z
i

 (t) – the number of involved nodes at 

the i-th station at time t, i = 0, 1, …, m+1. 

Functions  and  determine, 

respectively, the intensity of handover of cargo 

on the initial node station and the intensity of 

the distribution of cargo from the final node 

station. Functions 
0
(.) and (.) determine, 

respectively, speed of change of the number of 

involved processing nodes at the initial station 

and the number of involved processing nodes 

at other stations within the second technology. 

A description of the properties of the functions 

0
(.) and (.), and also their graphs is given in 

[8]. Here we note that these functions, as well 

as the functions  and  are continuous. 

We will designate  and , 

where  is the number of involved processing 

nodes; when exceeded part of the cargo is sent 

to the storage area. Parameters  and  deter-

mine, respectively, the intensity of sending 
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freight from the initial and intermediate sta-

tions to storage areas. Nonlocal linear restric-

tions (4) define a control system over the pro-

cess of cargo transportation, and the parameter 

 is its characteristic. 

As noted in [8], the class of solutions of sys-

tem (1) – (4) is extremely narrow. Therefore, its 

extension to the class of “quasi-solutions” was 

considered. The distinctive feature of the lat-

ter is the existence of gaps in a countable num-

ber of points. In [10] the existence and unique-

ness theorem for quasi-solution is proved. The 

results of a numerical investigation of the sys-

tem (1) – (4) are presented in [8]. The main 

task of the study was to study the dynamics of its 

quasi-solutions, as well as their dependence on 

some model parameters characterizing the con-

trol rule ( ), the technologies for transportation 

of cargo ( ) and intensity of shipping cargo on a 

node station (function ). According to the 

results of numerical research, the quasi-solution 

systems (1) – (4) are majorized by exponential 

functions, whose growth decreases with increas-

ing  and . The parameter  values   are limited 

due to the limited technological capabilities 

of the stations, and for large values  the con-

trol system loses its relevance. Therefore, after 

a relatively short period of time, the number of 

involved nodes in the stations will become sub-

stantially larger than , which will entail fail-

ures in the organization of transportation. Thus, 

from a practical point of view, the limitlessness 

of quasi-solutions of system (1) – (4) is a lack 

of the model. We recall that quasi-solutions 

defined above, in contrast to solutions, contain 

gaps at points that are multiples of the character-

istic of the control system. We call them quasi-

solutions of the first type.

Next, we consider another possible way of 

extending the class of solutions of the traveling 

wave type to a class of solutions of the “quasi-

travelling” wave type, namely, while weaken-

ing the nonlocal restrictions (4) (assuming 

that these restrictions are satisfied with some 

error). 

Definition 1. The family of absolutely con-

tinuous functions , defined on  , 

is called -quasi-solution of the traveling 

wave type of second type with characteristic

 > 0 for the system (1)-(4), if almost all 

t  [0, + ) functions  satisfy the sys-

tem of equations (1) – (3) and the condition 

  is 

satisfied.

1. On limited solutions 

of system (1) – (3)

Before proceeding to the investigation of 

quasi-solutions of the system (1) – (4) of the 

second type, we study the set of all solutions of 

the system of equations (1) – (3). Obviously, 

for any initial conditions this system has a 

unique solution. Let us prove that for a certain 

choice of functions  and  the solutions 

of the system of equations (1) – (3) are limited.

Theorem 1. Let the functions  and  

be limited on a half-line [0, + ). Then the 

solutions of the system of differential equations 

(1) – (3) are limited.

Proof. We will consider the first to be a com-

ponent of the solution of a system of the dif-

ferential equations (1) – (3), i.e. function 

z
0 
(.). This function is either limited, or unlim-

ited. We will assume that it is unlimited from 

the above. Then there is a sequence  

such that 

             and  . (5)

Then it follows from equation (5), and in 

particular from the definition of the function

0
(.) that

  and  ,

and also inequality 

                        (6)

is carried out. 
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lessness of function z
1
(.) from the above. Thus, 

function z
1
(.) also cannot be unlimited from 

the above. Similarly, it is possible to show that it 

cannot be unlimited from below. By an induc-

tion method, from the system of the differen-

tial equations (2) it is possible to show the limi-

tation of functions . 

So, according to the theorem 1, at the limita-

tion of functions  and , which is quite 

natural from the economic point of view, the 

solutions of the system of differential equations 

(1) – (3) are limited. For a more detailed inves-

tigation of the solutions, the system (1) – (3) 

was realized numerically with the help of the 

Runge–Kutta method of the fourth order. 

Before proceeding to a description of the 

numerical solution of this system, it is necessary 

to determine the functions . 

Function 
 
(.) on a segment [0, ]  is given by 

a parabola , where a > 0, y( ) = 0. 

Thus, the coefficients of the parabola are 

related by b =  . Obviously, the larger , the 

greater the ordinate of the vertex of the indi-

cated parabola, and, consequently, the inten-

sity of reception of cargoes by the second tech-

nology. As functions   and  we will use 

two classes of functions: 

a) constant function  ; 

b) periodic function 

. 

2. Quasi-solutions of system (1) – (4) 

of the second type with constant 

functions  and 

We will consider the system of the dif-

ferential equations (1) – (3) in which 

. This means that on the 

initial node station freight traffic is carried out 

with constant intensity  and with the same 

intensity as is distributed from the final node 

station. We will investigate the dependence of 

the solutions of the system (1) – (3) on the 

parameters of the model . Note that 

all these parameters are positive. According 

From inequality (6) and the first equation of 

system of the differential equations (2) it also 

follows that

  and  ,

and inequality 

is carried out.

Acting by induction, we will find that

        and  ,     (7)

and inequality 

                         (8)

is carried out.

It follows from (7) – (8) that the left-hand 

side of equation (3) is positive, and the right-

hand side is negative. This contradiction is 

connected with the assumption of limitless-

ness of function  from above. Thus, func-

tion  cannot be unlimited from the above. 

Similarly, it is possible to show that it cannot be 

unlimited from the below. So, function  is 

limited. 

Let us prove that the remaining components 

of the solution of the system of differential 

equations (1) – (3) will also be limited. We start 

with the function z
1 
(.). We will assume that this 

function is unlimited from the above. Then 

there exists a sequence  such that

 and .

Further, repeating the reasoning which is 

carried out at the proof of limitation of func-

tion , it is possible to show that take it 

takes the place of a ratio (7) and (8) where the 

sequence  will be replaced with the sequence 

. Therefore, for the chosen sequence  the 

left part of the differential equation (3) will be 

positive, and right – negative. This contradic-

tion is connected with the assumption of limit-
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to results of numerical experiments, since at 

some time point, solutions of system (1) – (3) 

reach constant values for all values of param-

eters  this system, i.e. exists , it 

follows that conditions 

are satisfied, and numbers  

satisfy the condition: 

.

For example, one of solutions of system 

(1) – (3) is given in Figure 1.

value . As we approach the central compo-

nents of the solution, these deviations decrease, 

and both positive and negative deviations are 

present. We will give substantial interpretation 

of the histogram 2. For this purpose we will 

note that if the number of the involved nodes 

at the station is equal to , then it means that at 

this station the volume of infrastructure oppor-

tunities which allows us to organize uninter-

rupted freight traffic is completely used. A pos-

itive deviation from the value  indicates that 

the station connects additional capacities and 

at the same time there may be disruptions in 

the organization of cargo transportation, and 

negative – about the possibility of additional 

loading. Thus, the central stations make opti-

mal use of infrastructure capabilities. The ini-

tial node station and the stations located near it 

are most loaded, and the final node station and 

the stations located near it do not fully utilize 

the infrastructure capabilities.

Let us investigate the dependence  on the 

parameters of the model. Let’s start with the 

parameter . Recall that it defines the norma-

tive rules for the interaction of neighboring sta-

tions. We will increase the parameter  at con-

stant values of other parameters. According to 

the results of experiments, the following regu-

larity holds: the absolute value of the maximum 

deviation of the solution of system (1) – (3) 
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Fig. 1. The schedule of the solution of system (1) – (3) 
with constant functions  and  
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Fig. 2. The histogram of deviations 
of the solutions of system (1) – (3) 

from the value  (base case)

This solution is received at  = 10 

and the following values of parameters:

.

We denote by . 

Thus, the numbers  determine the deviation 

of solutions from the value , that determines 

the capacity of the stations. In Figure 2 we give 

the histogram of the numbers  obtained from 

the solutions of the system (1) – (3), the graph 

for which is shown in Figure 1.

As can be seen from Figure 2, the first and 

last components of the solution of the system 

(1) – (3) have the greatest deviations from the 
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from the value , i.e.  decreases 

with increasing parameter , but for the central 

components of the solution these deviations 

can increase. This trend can be seen in Figure 

3. It shows the histogram of deviations  for the 

parameter , equal to 2, 5, 10 and 100, and the 

following fixed values of the remaining param-

eters: . Consequently, for 

arbitrarily small  > 0, there are values of the 

parameter  such that for all  (and for con-

stant values of the other parameters) inequality 

                          (9)

will be carried out.

We will pass to a research of deviations 

 from the parameter , which defines the 

intensity of receipt of goods by the second 

technology setting the rule of interaction of 

the station with neighboring storage areas. 

We will increase the value of this parame-

ter at invariable values of other parameters. 

We recall that this leads to an increase in the 

intensity of receipt of goods on the second 

technology. As experiments show, this leads 

to a reduction of absolute values of negative 

deviations . At the same time, positive devi-

ations  don’t change. This tendency can be 

seen in Figure 4. It is the histogram of devia-

tions  at the values of parameter , equal to 

0.4, 0.7, 2 and 4, and the following fixed val-

ues of other parameters: . 

We will note what, at such values of param-

eter  and  = 10 the ordinate of vertex of a 

parabola accepts, respectively, the values 10, 

17.5, 50 and 100.

We note that the parameter  is present at 

all of the equation of system (1) – (3) except 

the first. Therefore, increasing parameter , we 

increase the intensity of receipt of goods on the 

second technology at all stations, except for 

the initial one. It turns out that with the same 

effect, namely reduction of absolute values of 

negative deviations , it is possible to reach, 

changing parameter  only in the last equation 

of system (1) – (3), i.e. increasing the intensity 

of receipt of goods on the second technology 

only at the final node station. 

Let’s proceed to a research of deviations  

from the parameter , that determines the 

intensity of departure cargoes from the ini-

tial node station to the storage area. We will 

increase the value of this parameter at constant 

values of other parameters. Recall that this 

leads to an increase in the intensity of depar-

ture goods from the initial node to the stor-

age area. As experiments show, this leads to a 

decrease in positive deviations . In this case, 

negative deviations  do not change. This trend 

can be seen in Figure 5. 

On the figure the histogram of deviations  at 
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Fig. 3. The histogram of deviations 
of the solutions of the system (1) – (3) 

from the value  at change of parameter 
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Fig. 4. The histogram of deviations 
of the solutions of the system (1) – (3) 

from the value  at change of parameter 
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the values of parameter , equal to 2, 5, 10 and 

50 and the following fixed values of the remain-

ing parameters . 

Thus, an increase in parameter  in the last 

equation of system (1) – (3) and parameter 

 leads to a reduction of an absolute value of 

the maximum deviation of the solution of sys-

tem (1) – (3)  from value . This

in turn means, that for an arbitrarily small 

 > 0, there are values of the parameters  and 

, such that for all ,  (and with con-

stant values of the other parameters) inequal-

ity (9) will be satisfied.

Finally, we turn to the study of deviations  

from parameter , representing the intensity of 

the delivery of cargo to the initial node station 

and the intensity of the distribution of cargo 

from the final node station. We will increase 

the value of this parameter at constant values 

of other parameters. As shown by experiments, 

this leads to an increase in the absolute values 

of the deviations . This trend can be seen in 

Figure 6. On the figure, the histogram of devia-

tions  at the values of parameter d, equal to 1, 

2, 4 and 6 and the following fixed values of the 

remaining parameters .

It should be noted that with decreasing 

parameter  absolute values of deviations  

decrease to zero for  = 0. In this case the solu-

tion of the system (1) – (3) converges to the 

stationary solution

.

This situation is shown in Figure 7.

We proceed to analyze the results obtained 

above with the help of numerical experiments. 

According to their results for as small as  > 0 

by means of control parameters  it is 

possible to reach feasibility of inequality (9). 

A main objective of the conducted research 

is receiving -quasi-solutions of the traveling 

wave type with the characteristic  > 0 for sys-

tem (1) – (4), i.e. the organization of con-

trolled freight traffic by means of the technol-

ogies defined above. It is easy to see that the 

solutions of system (1) – (3) satisfying condi-

tion (9) are -quasi-solutions of the traveling 
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Fig. 6. The histogram of deviations 
of the solutions of the system (1) – (3) 

from the value  at change of parameter 
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wave type with an arbitrary characteristic  > 0 

for system (1) – (4). 

Thus, we have revealed two methods of 

obtaining -quasi-solutions of the traveling 

wave type with an arbitrary characteristic  > 0 

for system (1) – (4). The first method is asso-

ciated with the increase of the parameter , 

and the second with increasing parameters 

а and . Moreover, it is sufficient to increase 

the parameter а only in the last equation of the 

system (1) – (3). Obviously, these two methods 

can also be combined with each other. From a 

practical point of view, the first method is asso-

ciated with improving the infrastructure at all 

stations, and the second – with improving the 

infrastructure only at node stations, so that the 

latter is easier to use.

3. Quasi-solutions of system (1) – (4) 

of the second type with periodic 

functions  and 

Let us consider a system of differential equa-

tions (1) – (3), in which the functions  and 

 describing, respectively, the intensity of 

the supply of cargo to the initial node station 

and the intensity of the distribution of cargo 

from the final node station are periodic, i.e.

.

According to the results of numerical experi-

ments, starting from some time point , the 

solutions of the system (1) – (3) begin to oscillate 

in a certain neighborhood of the value , and the 

solution components satisfy the condition

 for any .

Moreover, there exists a natural number 

 such that 

  for  ,

  for  .

For example, Figure 8 shows one of the solu-

tions of system (1) – (3).

This solution was obtained at  = 10 and the 

following values of the parameters

.

We denote by 

Thus, the number  determines the maxi-

mum deviation of the -th component of the 

solution of the system (1) – (3) from the value

, determining the capacity of the stations. It 

is obvious that the numbers  satisfy condition

Let us investigate the dependence  on the 

parameters of the model. Numerical experi-

ments have shown that the dependence  on 

parameters  the same as in the case 

of constant functions  and . In par-

ticular, by means of an appropriate choice of 

parameters  it is possible to make the 

absolute values of the deviations arbitrarily 

small. Thus, as in the case of constant func-

tions  and , controlling these parame-

ters, which determine the infrastructure capa-

bilities of the stations, it is possible to organize 

a controlled freight flow. 

Fig. 8. The schedule of the solution of system (1) – (3) 
with periodic functions   and  
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It remains for us to investigate the depend-

ence  on the parameters  and . Unlike the 

parameters  only these parameters con-

trol does not allow us to make arbitrarily small 

absolute deviation values  and, accordingly, 

organize a controlled cargo flow. Nevertheless, 

we investigate the dependence  on  and .

Let’s start with the parameter . Note that 

this parameter determines the amplitude of the 

oscillations. We will increase the value of this 

parameter at constant values of other param-

eters. As experiments show, this leads to an 

increase in the absolute values of the deviations  

, i.e. dependence  from  is the same as on d. 

This trend can be seen in Figure 9. 

The figure shows the histogram of deviations  

 at the values of parameter , equal to 1, 2, 3 

and 4, and the following fixed values of other 

parameters  = 1, а = 0.2, с
0
 = с = 1  = 1, 

d = 5,  = 1.

We will pass on to investigation of the 

dependence  on the parameter . Since the 

period of functions  and  is equal to 

, then increasing the parameter  leads to 

a decrease in the period of functions  and 

. As shown by experiments, the depend-

ence |  | on  is a non-increasing function that 

takes values in a certain interval whose bound-

aries depend both on the index , and on the 

remaining parameters of the model. Figure 10 

shows a wide range of parameter variation  – 

from 0.001 to 400. The remaining parame-

ters are fixed and take the following values: 

 = 1, а = 0.2,  = с = 1  = 1, d = 2. As can 

be seen from this figure, for example, the 

values  change in the interval lying in a seg-

ment [1, 2]. It should be noted that for values  

close to zero functions  and  are close 

to constants, therefore, the left boundary of the 

indicated intervals can be determined with the 

help of constant functions  and  (com-

pare this histogram at  = 0.001 with the histo-

gram shown in Figure 2).

Finally, we analyze the results obtained in 

this section, i.e. in the case when the func-

tions  and  describing, respectively, 

the intensity of the supply of cargo to the ini-

tial node station and the intensity of the distri-

bution of cargo from the final node station are 

periodic. As it turned out, these results do not 

qualitatively differ from the results obtained in 

the previous section, i.e. for the case when the 

functions  and  are constants. For arbi-

Fig. 9. The histogram of deviations of the solutions of the 
system (1) – (3) from the value  at change of parameter 

Fig. 10. The histogram of deviations of the solutions of the system (1) – (3) 
from the value  at change of parameter 
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trarily small  > 0 we can obtain a -quasi-solu-

tion of the traveling wave type with the charac-

teristic  > 0 for system (1) – (3), i.e. organize 

a controlled flow of goods using the technol-

ogies described in the first paragraph. For this 

purpose, it is necessary to operate parame-

ters , which is characteristic of the used 

technologies. The essence of this management 

comes down to improvement of the infrastruc-

ture of stations.

Conclusion
This article is devoted to the study of a model 

for organizing cargo transportation between 

two node stations carried out using a number 

of technologies with a set rule of control. Such 

a model is described by a finite-dimensional 

system of differential equations with non-local 

linear restrictions. The class of the solution sat-

isfying nonlocal linear restrictions (solutions of 

the traveling wave type) is extremely narrow. 

This results in the need for the “correct” exten-

sion of class of solutions of the traveling wave 

type to a class of quasi-solutions of the trave-

ling wave type. In [8–10] one of the methods of 

such an extension is given, thus making it pos-

sible to obtain quasi-solutions that differ from 

solutions by the presence of gaps in a counta-

ble number of points. The study of these quasi-

solutions has shown that they are unlimited. 

From a practical point of view, this is a serious 

flaw, since quasi-solutions describe the number 

of involved nodes in stations. In this connec-

tion, a different method for extending of class 

of solutions of the traveling wave type to a class 

of quasi-solutions of the traveling wave type is 

proposed. Quasi-solutions obtained with the 

help of this method differ from solutions in that 

they are allowed to satisfy nonlocal constraints 

with a given error. It is shown that such quasi-

solutions are limited. 

Numerical experiments have shown that 

controlling the parameters of the model, one 

can obtain quasi-solutions for which nonlocal 

constraints are satisfied with arbitrarily small 

errors. 
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