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Abstract

This article offers a transition-based neural network model for extracting informative expressions 
from user request texts. The configuration and transition system that turns the process of informative 
expression extraction into the execution of a sequence of transitions is described. Prediction of 
transition sequence is done using a neural network that uses features derived from the configuration. To 
train and evaluate a proposed model, a corpus of annotated Android mobile application reviews from 
the Google Play store was created. The training procedure of the model for informative expressions 
extraction and selected model’s hyperparameters are described. An experiment was conducted 
comparing the proposed model and an alternative model based on a hybrid of convolutional and 
recurrent neural networks. To compare quality of these two models, the F1 score that aggregates recall 
and precision of extracted informative expressions was used. The experiment shows that the proposed 
model extracts expressions of interest better than the alternative: the F1 score for spans extraction 
increased by 2.9% and the F1 for link extraction increased by 36.2%. A qualitive analysis of extracted 
expressions indicates that the proposed model is applicable for the task of user request analysis during 
operation and the maintenance phase of software products.
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Introduction

The competitiveness of a software prod-
uct on the market largely depends on 
the speed and quality of the developer’s 

response to end user requests on issues associ-
ated with software bugs, errors in technical doc-
umentation, insufficient qualification of end 
users, etc. These problems are usually resolved 
at the software operation and maintenance 
stages [1]. According to [2], these account for 
67% of the whole software life cycle.

To handle user requests that usually are 
presented as unstructured text (emails, mes-
sages on forums and support chats) and make 
appropriate corrective actions, IT companies 
create specialized structures called techni-
cal support services. Modern helpdesk soft-
ware systems like HappyFox, Service Desk 
Plus, Zendesk have a large set of functions for 
the acceptance and storage of user requests, 
linking related requests, request status mon-
itoring, storage of communication between 
support staff and users. Despite that, the 
understanding and interpretation of a request 
text, as well as assignment of a support spe-
cialist to resolve the request is still done by 
human beings. Unexpected growth of the user 
base can lead to problems with support ser-
vice scalability and increase costs of non-core 
structures within the company.

In addition to processing “explicit” user 
requests related to the software features, 
“implicit” requests made by users in channels 
that are rarely the focus of support services 
can be of great interest to companies: forums, 
blogs, and social network pages made at the 
initiative of the community of software users. 
“Implicit” requests, presented in the form of 
opinions or reviews, can be just as useful to 
the software developer as “explicit” ones, and 
at the same time they are much more numer-
ous. Since analysis of a large amount of text 
is a time consuming task, this kind of feed-
back is either not reviewed systematically or 
not reviewed at all.

To handle the problems mentioned above, 
methods of automatic text analysis can be 
applied to the requests in order to identify 
statements about problems that users encoun-
tered while using the software. There is a body 
of research devoted to the problem of apply-
ing automatic text analysis methods to user 
requests in order to identify and extract knowl-
edge useful for development and maintenance 
of software products. In [3], the authors pro-
pose to use decision trees, a naive Bayes clas-
sifier and logistic regression to identify user 
complaints about bugs among other kinds of 
requests in open source software bug trackers. 
The study [4] is devoted to the analysis of var-
ious aspects of the review texts about mobile 
applications published in the Apple AppStore. 
It is noted that although some of the reviews 
are not informative to application developers, 
others contain information about bugs, user 
experience, and feature requests. The method 
for discovery of feature requests in review texts 
from the Google Store is considered in [5]. 
The authors use a set of linguistic rules to clas-
sify sentences into classes “contains / does not 
contain a request,” and then use a Latent Dir-
ichlet Allocation to determine the main topics 
in requests. In [6], the authors propose a corpus 
of mobile application reviews in German from 
the Google Play Store, in which they annotate 
application features — aspects, and user opin-
ions about them – descriptions.

Analysis showed that most of the existing 
models can do only coarse-grained analysis 
on the level of whole request text or a sentence 
that is unable to identify and extract the set 
of phrases that express the essence of request. 
Furthermore, each of the described models can 
identify only a kind of request which does not 
correspond to the real needs of the support ser-
vice. In this paper, we propose a solution that 
can extract many kinds of user requests within 
a single model and at the same time can extract 
key phrases in the texts. This model is a devel-
opment of the ideas described earlier in [7].
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1. The problem  
of processing user requests  
during software operations  

and maintenance phase

In this work, the task of user request analysis 
during software operations and maintenance 
is reduced to extraction of informative expres-
sions (IE) with specific questions, wishes and 
requirements of users, from request texts. The 
structure of an IE is defined as an “object – 
description” pair, where an object is the men-
tion of the software itself, its functions or 
graphic user interface elements in the text, and 
a description is a phrase in which the user eval-

uates the object or talks about its current state.

To separate IEs into semantically similar 
subgroups, an original classifier based on the 
elements of the universal activity model [8] 
is proposed: the subject of activity, the target 
object of the activity, the tools used in the pro-
cess, the relationships between the elements 
of activity. In this specific task, the subject of 
activity is the software product user, the object 
is a software product itself, the tools are hard-
ware and side software that ensure the func-
tioning of the software product. A hierarchi-
cal classifier of IE types based on this model is 
presented in Figure 1. The classifier consists of 
the following elements:

User 
Request

1.1.1. Questions about features

1.2.1. Positive opinion about feature

2.1.2. GUI bug

2.2.2. GUI improvement

1.1.2. Questions about GUI

1.2.2. Negative opinion about feature

2.1.3. Incorrect documentation

2.2.3. Document improvement

1.1.3. Questions on documentation

2.1.1. Software bug

2.2.1. Feature improvement

1.1. User competencies

2.1. Features

1.2. Opinions about  
software features

2.2. Software improvement

3.1. Software environment  
and hardware bugs

1. Software  
product user

3. Software  
environment  
and hardware

2. Software 
product

 Fig. 1. Classifier of informative expressions

DATA ANALYSIS AND INTELLIGENCE SYSTEMS



BUSINESS INFORMATICS   Vol. 14  No 1 – 2020

10

User competencies – user questions about 
the features of the software, its graphical user 
interface and documentation;

Opinions about software features – positive 
and negative user opinions about the software 
features;

Software features – phrases in which users 
report incorrect operation of software features, 
its graphical user interface, factual errors in the 
documentation;

Features – requests for new features in soft-
ware and improvements in documentation and 
GUI;

Software environment and hardware bugs – 
user complaints about failures in the operation 
of software environment and hardware.

The authors do not claim that the proposed 
classifier of informative expressions is com-
plete and general enough to be applied in any 
domain. In this work, the authors analyzed 
review texts from the Google Play store and 
selected 4 classes of IE from the classifier fre-
quently mentioned by users in their reviews: 
bug (“software and hardware bugs”), feature 
request (“improvement of the software”), pos-
itive feature, negative feature. Here are some 
examples of IEs from the Google Play Marker 
review texts (translated from Russian):

Bug: “player does not appear on the lock 
screen”, “playlist does not update when swipe 
down”;

Feature request: “add shuffle button”, “allow 
to edit tags”;

Positive feature: “many possibilities for manip-
ulating sound”, “quickly cancel the reception”;

Negative feature: “record archive is not 
stored”, “duplicates features of the Gosuslugi 
application”.

Thus, given the user request text as a sequence 
of words  and classifier structure, 
we should extract the set of IEs from this text. 
Formally, IE is a triple ( , , ) where  is an 
object,  is a description and  is a class of IE 
from the set , t, 

. Objects and descriptions 
in the text are defined as spans: ,  

. The IE class is determined by 
the class label assigned to description. Examples 
of the IE structure are presented at Figure 2.

Fig. 2. Examples of informative  
expression structure

is not saved  
(BUG)

would like to have 
(FEATURE REQUEST)

records archive 
(OBJECT)

clear screen 
(OBJECT)

2. Transition-based  
neural network model

In order to extract IEs from user request 
text, an original transition-based neural net-
work model is proposed. This kind of model is 
widely used in tasks where the target variable is 
an object with a complex structure: prediction 
of sentence phrase structure [9], dependency 
parsing [10] and named entity recognition [11]. 
This kind of model is attractive since it is fast at 
prediction time and can use complex non-local 
features. A transition-based model requires the 
definition of abstract automata that accept text 
as input and transform it into set of IEs. The 
state of the abstract automata is determined by 
configuration C, which changes when autom-
ata execute transition. Initial configuration C

0
 

constructed from the input text. After comple-
tion of the transition sequence y = y

1
, …, y

T 
,  

y
t
  Y, the automata reach final configuration 

C
T
 which contains all the IEs from analyzed 

text. The next transition at step  is selected by 
probabilistic classifier that maps current con-
figuration C

t
 to probability distribution over 

possible transitions: 
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                       	 (1)

We define configuration as tuple ( , , , 
 ). Buffer  holds words from the input text. 

Stack  contains object and description spans 
in the order they are found in the text. As spans 
that consist of several words are built incre-
mentally, the entity on the top of the stack can 
be extended with additional words during pre-
diction. Buffer  holds links between elements 
of stack . List  holds the history of taken 
transitions that led initial configuration to the 
current 

 
.

Let us describe in detail the meaning of the 
elements of the set of transitions  

.  dis-
cards the first element of . ) creates a 
new span of the class , puts 
it on the top of  and moves a word from the 
beginning of  to created span.  moves 
the item from the beginning of  in the span on 
the top of .  links elements of  
at positions  and ; the created link is placed 
in the end of . By defining set  in this way, 
we limit the maximum depth at which a con-
nection between elements of  can be created. 
We estimate this depth as the maximum depth 
between linked spans in the training set because 
further increase in depth will not be supported 
by appropriate training samples.  transition 
ends the prediction process.

There are configurations from which some 
transition can be executed only if the configu-
ration satisfies certain restrictions: for example, 
if  is empty, no transition can be performed 
except  and . These restrictions 
are expressed with function  
that returns the subset of available transitions 
for current configuration 

 
. The necessary con-

ditions for each transition are shown in Table 1.

Conditional probability distribution on 
possible transitions from expression (1) is 
defined as a probabilistic model of the fol-
lowing form:

Table 1.
Transition preconditions

Transition Precondition

Shift  

Start(e)  

Add(e)        

Link(n
1
, n

2
)

End  

     	 (1)

where ,  – classifier weights;

 – feature vector derived from the cur-
rent configuration.

Feature vector  is formed by a concate-
nation of feature vectors for individual parts of 
the configuration:

                       	 (3)

To construct feature vectors of configuration 
elements, we use contextual vector representa-
tions of input text that are obtained from func-
tion :

 (B
1
), ...,  (B

n 
) = F

 
(E (w

1 
), ..., E (w

N 
)),  (4)

where  – function that maps words into vec-
tor space.

 can be any mapping from one vector 
sequence to another. This work considers two 
options that have been used in natural language 
processing problems: one-dimensional convo-
lutional (CNN) [12–14] and recurrent (RNN) 
[15–17] neural networks.

In the case of CNN, each vector in the input 
sequence at position  is built from input 
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sequence vectors in the window of size  cen-
tered at  by the following equation: 

    (5)

where ,  – weights of convolution;

 – non-linear activation function. 

So,  can be thought of as a contextual rep-
resentation of the original word in position .  
We use MaxOut activation [18] as  because it 
showed the best accuracy during preliminary 
experiments. To improve the training process 
of the neural network, we applied the residual 
learning approach from [19], when the out-
put of layer is summed with unmodified layer 
input. In such a case, the output of the layer  
is defined as:

                  .	 (6)

Contextual representations of sequence ele-
ments can be obtained with recurrent neural 
networks (RNNs) by the following recurrent 
formula:

                  .	 (7)

In this case, the contextual information is 
transmitted in such a way that the element at 

position n carries information about previ-
ous (n – 1) elements. To get context informa-
tion about future context. bidirectional RNNs 
[20] can be used. The resulting contextual rep-
resentations are formed as a concatenation of 
vector representations  and  from forward 
(from left to right) and reverse (from right to 
left) RNNs:

               	 (8)

One of the most used types of RNNs are Long 
Short-Term Memory (LSTM) networks [21] 
which show good performance in many natu-
ral language processing tasks [22–24]. In this 
work, we use a multilayer bidirectional LSTM. 
Figure 3 shows how contextual representations 
of sequence elements are obtained with CNN 
and Bi-LSTM networks.

Vector ( ) is a concatenation of feature vec-
tors for the first three elements of the buffer :

( ) = [ (
1
); (B

2
), (

3
)]. 

To obtain feature vector ( ), the feature 
vectors for elements of stack  are calculated 
according to the following formula:

а)                                                                                   b)
h

1         
h

2         
h

3        
h

4          
h

5

h
1        

h
2        

h
3       

h
4        

h
5

w
1        

w
2        

w
3        

w
4         

w
5

w
1      

w
2      

w
3       

w
4       

w
5

Bi
-L
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M

Bi
-L

ST
M

Bi
-L

ST
M
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-L
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M
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-L
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M

Fig. 3. Diagrams of using CNN and LSTM networks for building contextual representations  
of input sequence elements: a – CNN; b – Bi-LSTM
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     (9)

where  – indices of the first and last 
words in the -th text span;

 – embedding of the span type.

Since in the training set the maximum dis-
tance between any two fragments joined by a 
link is 4, the depth of the search for a link can 
be limited by the first five elements of . Thus, 
to get the feature vector for , we concatenate 
the first five feature vectors for  elements:

                   (S) = ( (S
1
); ...; (S

5
)).	 (10)

Features for the history of the taken transi-
tions  at step  are obtained from the last step 
of LSTM network that processes the sequence 
of history element embeddings:

        (H) = LSTM (E(H
1
); ...; E(H

t 
))

t 
	 (11)

Proposed model (1–11) shares feature 
extraction components that are used for 

span extraction and span linking tasks. This 
reduces the total number of model parameters 
that should be estimated during training and 
prevents overfitting. Furthermore, this kind 
of model structure enables multitask learning 
[25, 26] when using one model to learn several 
related tasks can speed up learning or improve 
accuracy. During training, we maximize the 
likelihood of true transition sequences that 
are constructed from the training samples my 
minimizing cross-entropy loss between pre-
dicted distribution on possible transitions and 
true transition:

  	 (12)

Model parameters  include the parameters 
of the classifier, context representation network 
(BiLSTM or CNN), history representation 
LSTM and vector representation matrices for 
E(H) and E(type(i)). To optimize the param-
eters set, any gradient optimization algorithm 
can be used. The final neural network architec-
ture is shown in Figure 4.

player

sometimes

doesn’t

appear

on

the

scree

,

but

in

…

1 0 1 1

H
1

H
1

... H
t

player Object

sometimes 
doesn’t 

appear on 
the screen

Bug

but in 
general 

everything 
works fine

Positive

LSTM (E (H
i 
)) 

...

Fig 4. Neural network architecture
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3. Experimental study  
of the model and analysis  

of the results

Validation of the neural network model was 
conducted on the annotated user request cor-
pus in Russian that was obtained from the 
Google Play application store and consists of 
nine categories of mobile applications: “Auto 
and vehicles,” “Maps and navigation,” “Med-
icine,” “Music and audio,” “Personalization,” 
“Finance,” “Shopping,” “Education,” “Video 
players.” Five applications were selected in 
each category and 20 requests were randomly 
selected per application. Each request was split 
into sentences.

Annotation of the corpus was carried out by 
the authors for 3 weeks, after which the anno-
tated corpus was given to a third-party special-
ist for audit. Then the corpus was corrected 
based on the feedback received. Quantitative 
statistics on the collected corpus are given in 
Table 2.

Table 2.
Quantitative statistics  
on the collected corpus  

from the Google Play Store

Total request count 900

The average number of words in a query 52.3

Number of IEs 2391

The average number of IEs per request 2.65

Number of objects 2273

Number of positive features 999

Number of negative features 851

Number of feature requests 200

Number of bugs 677

During the experiments, two versions of the 
proposed model were tested, using a convolu-

tional neural network (6) and a bi-directional 
LSTM (8) as a mechanism for obtaining con-
textual representations, which will be called 
Trans-CNN and Trans-LSTM. The follow-
ing hyper-parameter values were set for Trans-
CNN: convolution window size – 3, number 
of convolutional layers – 3, number of filters –  
150. In the case of Trans-LSTM: the number 
of BiLSTM layers is 2, the size of the hidden 
state BiLSTM layer is 200. Other model hyper-
parameters: the size of the hidden layer LSTM

H
 

is 30, the representation E(H
t 
) is 30, E(class(i)) 

is 30.

We use a pretrained fastText [27] Russian 
model of size 300 for obtaining vector rep-
resentations of words. FastText was cho-
sen for its ability to handle typos in words 
and strong performance on different tasks 
with morphologically rich languages such 
as Russian. Optimization of model param-
eters is carried out by Adam with a learn-
ing rate of 10–3. To prevent overfitting, we 
employed various regularization techniques: 
20% dropout, L

2
 regularization . As 

baseline, a hybrid CNN-RNN model from 
[28] was used.

To evaluate the quality of IEs extraction, 
the -fold cross-validation procedure was 
used. During cross-validation, the sample 
is divided into  disjoint equally sized parts 
called folds, then  iterations when model 
training on  folds and testing on the fold 
that was not used during training are per-
formed. Each fold of the divided sample is 
used at test time only ones. The set of  qual-
ity estimates is then averaged. In our case, 
the folds were formed from requests from the 
same application category. Thus, for training 
and verification, 9 parts were formed. As a 
result, this method gives a “pessimistic” esti-
mation of model quality: during training the 
model does not have access to category spe-
cific lexicon, which increases the require-
ments for the generalization ability of the 
model.
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The results of comparing two versions of the 
transition-based model and the baseline are 
shown in Table 3. F-measure for spans was 
calculated by averaging F-measures for each 
of the five span classes. Trans-LSTM has the 
best accuracy both in IF span extraction with 
67% F1 and span linking with 64.8% F1. The 
improvement in extraction quality relative to 
the baseline model is 2.9% for span extraction 
and 36.2% for span linking.

A detailed comparison of Trans-LSTM and 

baseline model accuracies for each fold is 

shown in Table 4, where the first number is a 

F1 score of Trans-LSTM and the second num-

ber in brackets is a F1 score of baseline, best F1 

shown in bold. 

Testing results suggest that the model showed 

good results on the IEs extracting task and can 

be used to solve practical problems.

Table 4.
Comparison of Trans-LSTM and baseline models

Category Object Positive Negative Bug Feat. Request Link

Auto  
and vehicles 0.747 (0.730) 0.724 (0.639) 0.548 (0.672) 0.646 (0.678) 0.691 (0.633) 0.676 (0.493)

Personalization 0.721 (0.684) 0.685 (0.677) 0.602 (0.559) 0.598 (0.625) 0.602 (0.658) 0.633 (0.459)

Music and audio 0.748 (0.667) 0.649 (0.649) 0.624 (0.535) 0.630 (0.594) 0.632 (0.542) 0.603 (0.431)

Maps  
and navigation 0.656 (0.699) 0.628 (0.665) 0.559 (0.529) 0.711 (0.679) 0.694 (0.481) 0.631 (0.455)

Medicine 0.707 (0.711) 0.713 (0.600) 0.713 (0.637) 0.691 (0.617) 0.673 (0.591) 0.659 (0.490)

Finance 0.708 (0.706) 0.659 (0.709) 0.615 (0.626) 0.641 (0.623) 0.622 (0.700) 0.682 (0.497)

Shopping 0.745 (0.715) 0.788 (0.756) 0.697 (0.647) 0.576 (0.685) 0.841 (0.691) 0.689 (0.524)

Education 0.746 (0.762) 0.695 (0.745) 0.586 (0.623) 0.757 (0.726) 0.812 (0.702) 0.686 (0.511)

Video players 0.677 (0.693) 0.707 (0.685) 0.534 (0.647) 0.608 (0.531) 0.529 (0.565) 0.574 (0.422)

Avg. 0.717 (0.707) 0.694 (0.681) 0.609 (0.608) 0.651 (0.640) 0.677 (0.618) 0.648 (0.476)

Table 3.
Models quality comparison

Model Spans F1 Links F1

Baseline 0.651 0.476

Trans-CNN 0.641 0.598

Trans-LSTM 0.670 0.648

DATA ANALYSIS AND INTELLIGENCE SYSTEMS



BUSINESS INFORMATICS   Vol. 14  No 1 – 2020

16

Conclusion

The results of the experiments suggest that 
the proposed model shows better results when 
processing user requests in comparison with 
the baseline. The improvement with respect 
to the baseline is 2.9% for span extraction and 
36.2% for span linking. A qualitative analysis 
of the results indicates that proposed model 
is suitable for processing user requests during 
operations and maintenance of software prod-
ucts.

Information extracted from user requests 
with respect to the proposed classifier can be 
used by:

 a support service for the classifier-guided 
routing of user requests to specialists with nec-
essary competencies, recognition of the stand-
ard requests and the automatic response gener-
ation based on standard templates;

 a software development department to 
detect and fix critical bugs revealed by user 
complaints and suggestions analysis, to mod-
ify functional and non-functional require-
ments, to improve GUI and user guides;

 a marketing department for monitor-
ing negative and positive opinions about 
both own and competitors’ products and for 
modifying marketing strategy based on this 
data.
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