
BUSINESS INFORMATICS Vol. 14 No 1 – 2020

7

DOI: 10.17323/2587-814X.2020.1.7.18

Neural network model for user request
analysis during software operations
and maintenance phase

Egor I. Gribkov a,b

E-mail: drnemor@gmail.com

Yuri P. Yekhlakov a

E-mail: upe@tusur.ru
a Tomsk State University of Control Systems and Radioelectronics

Address: 40, Prospect Lenina, Tomsk 634050
b TomskSoft LLC

Address: 8, Nahimova Street, Tomsk 634034

Abstract

This article offers a transition-based neural network model for extracting informative expressions
from user request texts. The configuration and transition system that turns the process of informative
expression extraction into the execution of a sequence of transitions is described. Prediction of
transition sequence is done using a neural network that uses features derived from the configuration. To
train and evaluate a proposed model, a corpus of annotated Android mobile application reviews from
the Google Play store was created. The training procedure of the model for informative expressions
extraction and selected model’s hyperparameters are described. An experiment was conducted
comparing the proposed model and an alternative model based on a hybrid of convolutional and
recurrent neural networks. To compare quality of these two models, the F1 score that aggregates recall
and precision of extracted informative expressions was used. The experiment shows that the proposed
model extracts expressions of interest better than the alternative: the F1 score for spans extraction
increased by 2.9% and the F1 for link extraction increased by 36.2%. A qualitive analysis of extracted
expressions indicates that the proposed model is applicable for the task of user request analysis during
operation and the maintenance phase of software products.

Key words: natural language processing; software maintenance; machine learning; deep learning;
transition-based model.

Citation: Gribkov E.I., Yekhlakov Yu.P. (2020) Neural network model for user request analysis during
software operations and maintenance phase. Business Informatics, vol. 14, no 1, pp. 7–18.
DOI: 10.17323/2587-814X.2020.1.7.18

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

https://bijournal.hse.ru/en/2020--1%20Vol.14/354710836.html
https://orcid.org/0000-0003-1662-4005

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

8

Introduction

The competitiveness of a software prod-
uct on the market largely depends on
the speed and quality of the developer’s

response to end user requests on issues associ-
ated with software bugs, errors in technical doc-
umentation, insufficient qualification of end
users, etc. These problems are usually resolved
at the software operation and maintenance
stages [1]. According to [2], these account for
67% of the whole software life cycle.

To handle user requests that usually are
presented as unstructured text (emails, mes-
sages on forums and support chats) and make
appropriate corrective actions, IT companies
create specialized structures called techni-
cal support services. Modern helpdesk soft-
ware systems like HappyFox, Service Desk
Plus, Zendesk have a large set of functions for
the acceptance and storage of user requests,
linking related requests, request status mon-
itoring, storage of communication between
support staff and users. Despite that, the
understanding and interpretation of a request
text, as well as assignment of a support spe-
cialist to resolve the request is still done by
human beings. Unexpected growth of the user
base can lead to problems with support ser-
vice scalability and increase costs of non-core
structures within the company.

In addition to processing “explicit” user
requests related to the software features,
“implicit” requests made by users in channels
that are rarely the focus of support services
can be of great interest to companies: forums,
blogs, and social network pages made at the
initiative of the community of software users.
“Implicit” requests, presented in the form of
opinions or reviews, can be just as useful to
the software developer as “explicit” ones, and
at the same time they are much more numer-
ous. Since analysis of a large amount of text
is a time consuming task, this kind of feed-
back is either not reviewed systematically or
not reviewed at all.

To handle the problems mentioned above,
methods of automatic text analysis can be
applied to the requests in order to identify
statements about problems that users encoun-
tered while using the software. There is a body
of research devoted to the problem of apply-
ing automatic text analysis methods to user
requests in order to identify and extract knowl-
edge useful for development and maintenance
of software products. In [3], the authors pro-
pose to use decision trees, a naive Bayes clas-
sifier and logistic regression to identify user
complaints about bugs among other kinds of
requests in open source software bug trackers.
The study [4] is devoted to the analysis of var-
ious aspects of the review texts about mobile
applications published in the Apple AppStore.
It is noted that although some of the reviews
are not informative to application developers,
others contain information about bugs, user
experience, and feature requests. The method
for discovery of feature requests in review texts
from the Google Store is considered in [5].
The authors use a set of linguistic rules to clas-
sify sentences into classes “contains / does not
contain a request,” and then use a Latent Dir-
ichlet Allocation to determine the main topics
in requests. In [6], the authors propose a corpus
of mobile application reviews in German from
the Google Play Store, in which they annotate
application features — aspects, and user opin-
ions about them – descriptions.

Analysis showed that most of the existing
models can do only coarse-grained analysis
on the level of whole request text or a sentence
that is unable to identify and extract the set
of phrases that express the essence of request.
Furthermore, each of the described models can
identify only a kind of request which does not
correspond to the real needs of the support ser-
vice. In this paper, we propose a solution that
can extract many kinds of user requests within
a single model and at the same time can extract
key phrases in the texts. This model is a devel-
opment of the ideas described earlier in [7].

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

9

1. The problem
of processing user requests
during software operations

and maintenance phase

In this work, the task of user request analysis
during software operations and maintenance
is reduced to extraction of informative expres-
sions (IE) with specific questions, wishes and
requirements of users, from request texts. The
structure of an IE is defined as an “object –
description” pair, where an object is the men-
tion of the software itself, its functions or
graphic user interface elements in the text, and
a description is a phrase in which the user eval-

uates the object or talks about its current state.

To separate IEs into semantically similar
subgroups, an original classifier based on the
elements of the universal activity model [8]
is proposed: the subject of activity, the target
object of the activity, the tools used in the pro-
cess, the relationships between the elements
of activity. In this specific task, the subject of
activity is the software product user, the object
is a software product itself, the tools are hard-
ware and side software that ensure the func-
tioning of the software product. A hierarchi-
cal classifier of IE types based on this model is
presented in Figure 1. The classifier consists of
the following elements:

User
Request

1.1.1. Questions about features

1.2.1. Positive opinion about feature

2.1.2. GUI bug

2.2.2. GUI improvement

1.1.2. Questions about GUI

1.2.2. Negative opinion about feature

2.1.3. Incorrect documentation

2.2.3. Document improvement

1.1.3. Questions on documentation

2.1.1. Software bug

2.2.1. Feature improvement

1.1. User competencies

2.1. Features

1.2. Opinions about
software features

2.2. Software improvement

3.1. Software environment
and hardware bugs

1. Software
product user

3. Software
environment
and hardware

2. Software
product

 Fig. 1. Classifier of informative expressions

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

10

User competencies – user questions about
the features of the software, its graphical user
interface and documentation;

Opinions about software features – positive
and negative user opinions about the software
features;

Software features – phrases in which users
report incorrect operation of software features,
its graphical user interface, factual errors in the
documentation;

Features – requests for new features in soft-
ware and improvements in documentation and
GUI;

Software environment and hardware bugs –
user complaints about failures in the operation
of software environment and hardware.

The authors do not claim that the proposed
classifier of informative expressions is com-
plete and general enough to be applied in any
domain. In this work, the authors analyzed
review texts from the Google Play store and
selected 4 classes of IE from the classifier fre-
quently mentioned by users in their reviews:
bug (“software and hardware bugs”), feature
request (“improvement of the software”), pos-
itive feature, negative feature. Here are some
examples of IEs from the Google Play Marker
review texts (translated from Russian):

Bug: “player does not appear on the lock
screen”, “playlist does not update when swipe
down”;

Feature request: “add shuffle button”, “allow
to edit tags”;

Positive feature: “many possibilities for manip-
ulating sound”, “quickly cancel the reception”;

Negative feature: “record archive is not
stored”, “duplicates features of the Gosuslugi
application”.

Thus, given the user request text as a sequence
of words and classifier structure,
we should extract the set of IEs from this text.
Formally, IE is a triple (, ,) where is an
object, is a description and is a class of IE
from the set , t,

. Objects and descriptions
in the text are defined as spans: ,

. The IE class is determined by
the class label assigned to description. Examples
of the IE structure are presented at Figure 2.

Fig. 2. Examples of informative
expression structure

is not saved
(BUG)

would like to have
(FEATURE REQUEST)

records archive
(OBJECT)

clear screen
(OBJECT)

2. Transition-based
neural network model

In order to extract IEs from user request
text, an original transition-based neural net-
work model is proposed. This kind of model is
widely used in tasks where the target variable is
an object with a complex structure: prediction
of sentence phrase structure [9], dependency
parsing [10] and named entity recognition [11].
This kind of model is attractive since it is fast at
prediction time and can use complex non-local
features. A transition-based model requires the
definition of abstract automata that accept text
as input and transform it into set of IEs. The
state of the abstract automata is determined by
configuration C, which changes when autom-
ata execute transition. Initial configuration C

0

constructed from the input text. After comple-
tion of the transition sequence y = y

1
, …, y

T
,

y
t
 Y, the automata reach final configuration

C
T
 which contains all the IEs from analyzed

text. The next transition at step is selected by
probabilistic classifier that maps current con-
figuration C

t
 to probability distribution over

possible transitions:

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

11

 	 (1)

We define configuration as tuple (, , ,
). Buffer holds words from the input text.

Stack contains object and description spans
in the order they are found in the text. As spans
that consist of several words are built incre-
mentally, the entity on the top of the stack can
be extended with additional words during pre-
diction. Buffer holds links between elements
of stack . List holds the history of taken
transitions that led initial configuration to the
current

.

Let us describe in detail the meaning of the
elements of the set of transitions

. dis-
cards the first element of .) creates a
new span of the class , puts
it on the top of and moves a word from the
beginning of to created span. moves
the item from the beginning of in the span on
the top of . links elements of
at positions and ; the created link is placed
in the end of . By defining set in this way,
we limit the maximum depth at which a con-
nection between elements of can be created.
We estimate this depth as the maximum depth
between linked spans in the training set because
further increase in depth will not be supported
by appropriate training samples. transition
ends the prediction process.

There are configurations from which some
transition can be executed only if the configu-
ration satisfies certain restrictions: for example,
if is empty, no transition can be performed
except and . These restrictions
are expressed with function
that returns the subset of available transitions
for current configuration

. The necessary con-

ditions for each transition are shown in Table 1.

Conditional probability distribution on
possible transitions from expression (1) is
defined as a probabilistic model of the fol-
lowing form:

Table 1.
Transition preconditions

Transition Precondition

Shift

Start(e)

Add(e)

Link(n
1
, n

2
)

End

 	 (1)

where , – classifier weights;

 – feature vector derived from the cur-
rent configuration.

Feature vector is formed by a concate-
nation of feature vectors for individual parts of
the configuration:

 	 (3)

To construct feature vectors of configuration
elements, we use contextual vector representa-
tions of input text that are obtained from func-
tion :

 (B
1
), ..., (B

n
) = F

(E (w

1
), ..., E (w

N
)), (4)

where – function that maps words into vec-
tor space.

 can be any mapping from one vector
sequence to another. This work considers two
options that have been used in natural language
processing problems: one-dimensional convo-
lutional (CNN) [12–14] and recurrent (RNN)
[15–17] neural networks.

In the case of CNN, each vector in the input
sequence at position is built from input

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

12

sequence vectors in the window of size cen-
tered at by the following equation:

 (5)

where , – weights of convolution;

 – non-linear activation function.

So, can be thought of as a contextual rep-
resentation of the original word in position .
We use MaxOut activation [18] as because it
showed the best accuracy during preliminary
experiments. To improve the training process
of the neural network, we applied the residual
learning approach from [19], when the out-
put of layer is summed with unmodified layer
input. In such a case, the output of the layer
is defined as:

 .	 (6)

Contextual representations of sequence ele-
ments can be obtained with recurrent neural
networks (RNNs) by the following recurrent
formula:

 .	 (7)

In this case, the contextual information is
transmitted in such a way that the element at

position n carries information about previ-
ous (n – 1) elements. To get context informa-
tion about future context. bidirectional RNNs
[20] can be used. The resulting contextual rep-
resentations are formed as a concatenation of
vector representations and from forward
(from left to right) and reverse (from right to
left) RNNs:

 	 (8)

One of the most used types of RNNs are Long
Short-Term Memory (LSTM) networks [21]
which show good performance in many natu-
ral language processing tasks [22–24]. In this
work, we use a multilayer bidirectional LSTM.
Figure 3 shows how contextual representations
of sequence elements are obtained with CNN
and Bi-LSTM networks.

Vector () is a concatenation of feature vec-
tors for the first three elements of the buffer :

() = [(
1
); (B

2
), (

3
)].

To obtain feature vector (), the feature
vectors for elements of stack are calculated
according to the following formula:

а) b)
h

1
h

2
h

3
h

4
h

5

h
1

h
2

h
3

h
4

h
5

w
1

w
2

w
3

w
4

w
5

w
1

w
2

w
3

w
4

w
5

Bi
-L

ST
M

Bi
-L

ST
M

Bi
-L

ST
M

Bi
-L

ST
M

Bi
-L

ST
M

Fig. 3. Diagrams of using CNN and LSTM networks for building contextual representations
of input sequence elements: a – CNN; b – Bi-LSTM

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

13

 (9)

where – indices of the first and last
words in the -th text span;

 – embedding of the span type.

Since in the training set the maximum dis-
tance between any two fragments joined by a
link is 4, the depth of the search for a link can
be limited by the first five elements of . Thus,
to get the feature vector for , we concatenate
the first five feature vectors for elements:

 (S) = ((S
1
); ...; (S

5
)).	 (10)

Features for the history of the taken transi-
tions at step are obtained from the last step
of LSTM network that processes the sequence
of history element embeddings:

 (H) = LSTM (E(H
1
); ...; E(H

t
))

t
	 (11)

Proposed model (1–11) shares feature
extraction components that are used for

span extraction and span linking tasks. This
reduces the total number of model parameters
that should be estimated during training and
prevents overfitting. Furthermore, this kind
of model structure enables multitask learning
[25, 26] when using one model to learn several
related tasks can speed up learning or improve
accuracy. During training, we maximize the
likelihood of true transition sequences that
are constructed from the training samples my
minimizing cross-entropy loss between pre-
dicted distribution on possible transitions and
true transition:

 	 (12)

Model parameters include the parameters
of the classifier, context representation network
(BiLSTM or CNN), history representation
LSTM and vector representation matrices for
E(H) and E(type(i)). To optimize the param-
eters set, any gradient optimization algorithm
can be used. The final neural network architec-
ture is shown in Figure 4.

player

sometimes

doesn’t

appear

on

the

scree

,

but

in

…

1 0 1 1

H
1

H
1

... H
t

player Object

sometimes
doesn’t

appear on
the screen

Bug

but in
general

everything
works fine

Positive

LSTM (E (H
i
))

...

Fig 4. Neural network architecture

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

14

3. Experimental study
of the model and analysis

of the results

Validation of the neural network model was
conducted on the annotated user request cor-
pus in Russian that was obtained from the
Google Play application store and consists of
nine categories of mobile applications: “Auto
and vehicles,” “Maps and navigation,” “Med-
icine,” “Music and audio,” “Personalization,”
“Finance,” “Shopping,” “Education,” “Video
players.” Five applications were selected in
each category and 20 requests were randomly
selected per application. Each request was split
into sentences.

Annotation of the corpus was carried out by
the authors for 3 weeks, after which the anno-
tated corpus was given to a third-party special-
ist for audit. Then the corpus was corrected
based on the feedback received. Quantitative
statistics on the collected corpus are given in
Table 2.

Table 2.
Quantitative statistics
on the collected corpus

from the Google Play Store

Total request count 900

The average number of words in a query 52.3

Number of IEs 2391

The average number of IEs per request 2.65

Number of objects 2273

Number of positive features 999

Number of negative features 851

Number of feature requests 200

Number of bugs 677

During the experiments, two versions of the
proposed model were tested, using a convolu-

tional neural network (6) and a bi-directional
LSTM (8) as a mechanism for obtaining con-
textual representations, which will be called
Trans-CNN and Trans-LSTM. The follow-
ing hyper-parameter values were set for Trans-
CNN: convolution window size – 3, number
of convolutional layers – 3, number of filters –
150. In the case of Trans-LSTM: the number
of BiLSTM layers is 2, the size of the hidden
state BiLSTM layer is 200. Other model hyper-
parameters: the size of the hidden layer LSTM

H

is 30, the representation E(H
t
) is 30, E(class(i))

is 30.

We use a pretrained fastText [27] Russian
model of size 300 for obtaining vector rep-
resentations of words. FastText was cho-
sen for its ability to handle typos in words
and strong performance on different tasks
with morphologically rich languages such
as Russian. Optimization of model param-
eters is carried out by Adam with a learn-
ing rate of 10–3. To prevent overfitting, we
employed various regularization techniques:
20% dropout, L

2
 regularization . As

baseline, a hybrid CNN-RNN model from
[28] was used.

To evaluate the quality of IEs extraction,
the -fold cross-validation procedure was
used. During cross-validation, the sample
is divided into disjoint equally sized parts
called folds, then iterations when model
training on folds and testing on the fold
that was not used during training are per-
formed. Each fold of the divided sample is
used at test time only ones. The set of qual-
ity estimates is then averaged. In our case,
the folds were formed from requests from the
same application category. Thus, for training
and verification, 9 parts were formed. As a
result, this method gives a “pessimistic” esti-
mation of model quality: during training the
model does not have access to category spe-
cific lexicon, which increases the require-
ments for the generalization ability of the
model.

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

15

The results of comparing two versions of the
transition-based model and the baseline are
shown in Table 3. F-measure for spans was
calculated by averaging F-measures for each
of the five span classes. Trans-LSTM has the
best accuracy both in IF span extraction with
67% F1 and span linking with 64.8% F1. The
improvement in extraction quality relative to
the baseline model is 2.9% for span extraction
and 36.2% for span linking.

A detailed comparison of Trans-LSTM and

baseline model accuracies for each fold is

shown in Table 4, where the first number is a

F1 score of Trans-LSTM and the second num-

ber in brackets is a F1 score of baseline, best F1

shown in bold.

Testing results suggest that the model showed

good results on the IEs extracting task and can

be used to solve practical problems.

Table 4.
Comparison of Trans-LSTM and baseline models

Category Object Positive Negative Bug Feat. Request Link

Auto
and vehicles 0.747 (0.730) 0.724 (0.639) 0.548 (0.672) 0.646 (0.678) 0.691 (0.633) 0.676 (0.493)

Personalization 0.721 (0.684) 0.685 (0.677) 0.602 (0.559) 0.598 (0.625) 0.602 (0.658) 0.633 (0.459)

Music and audio 0.748 (0.667) 0.649 (0.649) 0.624 (0.535) 0.630 (0.594) 0.632 (0.542) 0.603 (0.431)

Maps
and navigation 0.656 (0.699) 0.628 (0.665) 0.559 (0.529) 0.711 (0.679) 0.694 (0.481) 0.631 (0.455)

Medicine 0.707 (0.711) 0.713 (0.600) 0.713 (0.637) 0.691 (0.617) 0.673 (0.591) 0.659 (0.490)

Finance 0.708 (0.706) 0.659 (0.709) 0.615 (0.626) 0.641 (0.623) 0.622 (0.700) 0.682 (0.497)

Shopping 0.745 (0.715) 0.788 (0.756) 0.697 (0.647) 0.576 (0.685) 0.841 (0.691) 0.689 (0.524)

Education 0.746 (0.762) 0.695 (0.745) 0.586 (0.623) 0.757 (0.726) 0.812 (0.702) 0.686 (0.511)

Video players 0.677 (0.693) 0.707 (0.685) 0.534 (0.647) 0.608 (0.531) 0.529 (0.565) 0.574 (0.422)

Avg. 0.717 (0.707) 0.694 (0.681) 0.609 (0.608) 0.651 (0.640) 0.677 (0.618) 0.648 (0.476)

Table 3.
Models quality comparison

Model Spans F1 Links F1

Baseline 0.651 0.476

Trans-CNN 0.641 0.598

Trans-LSTM 0.670 0.648

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

16

Conclusion

The results of the experiments suggest that
the proposed model shows better results when
processing user requests in comparison with
the baseline. The improvement with respect
to the baseline is 2.9% for span extraction and
36.2% for span linking. A qualitative analysis
of the results indicates that proposed model
is suitable for processing user requests during
operations and maintenance of software prod-
ucts.

Information extracted from user requests
with respect to the proposed classifier can be
used by:

 a support service for the classifier-guided
routing of user requests to specialists with nec-
essary competencies, recognition of the stand-
ard requests and the automatic response gener-
ation based on standard templates;

 a software development department to
detect and fix critical bugs revealed by user
complaints and suggestions analysis, to mod-
ify functional and non-functional require-
ments, to improve GUI and user guides;

 a marketing department for monitor-
ing negative and positive opinions about
both own and competitors’ products and for
modifying marketing strategy based on this
data.

Acknowledgments

This study was conducted under government
order of the Ministry of Science and Education
of Russia, project “Methodological and instru-
mental support for decision making in the tasks
of managing socio-economic systems and pro-
cesses in a heterogeneous information envi-
ronment.”

References

1.	 Standartinform (2011) GOST R ISO/IEC 12207-2010. Information technology. Systems and software
engineering. Software life cycle processes. Moscow: Standartinform (in Russian).

2.	 Schach S.R. (2011) Object-oriented and classical software engineering. N.Y.: McGraw-Hill Education.

3.	 Antoniol G., Ayari K., Di Penta M., Khomh F., Y.-G. (2008) Is it a bug or an enhancement?
A text-based approach to classify change requests. Proceedings of the 2008 Conference of the Center
for Advanced Studies on Collaborative Research: Meeting of Minds, Ontario, Canada, 27–30 October, 2008,
pp. 304–318. DOI: 10.1145/1463788.1463819.

4.	 Pagano D., Maalej W. (2013) User feedback in the appstore: An empirical study. Proceedings of the 21st IEEE
International Requirements Engineering Conference. Rio de Janeiro, Brasil, 15–19 July 2013, pp. 125–134.
DOI: 10.1109/RE.2013.6636712.

5.	 Iacob C., Harrison R. (2013) Retrieving and analyzing mobile apps feature requests from online reviews.
Proceedings of the 10th Working Conference on Mining Software Repositories (MSR 2013), San Francisco, USA,
18–19 May 2013, pp. 41–44. DOI: 10.1109/MSR.2013.6624001.

6.	 S nger M., Leser U., Kemmerer S., Adolphs P., Klinger R. (2016) SCARE – The sentiment corpus of app
reviews with fine-grained annotations in German. Proceedings of the 10th International Conference
on Language Resources and Evaluation. Portoro , Slovenia, 23–28 May 2016, pp. 1114–1121.

7.	 Yekhlakov Yu.P., Gribkov E.I. (2018) User opinion extraction model concerning consumer properties
of products based on a recurrent neural network. Business Informatics, vol. 46, no 4, pp. 7–16.
DOI: 10.17323/1998-0663.2018.4.7.16.

8.	 Peregudov F.I., Tarasenko F.P. (1997) Basics of system analysis: guide. Tomsk: NTL (in Russian).

9.	 Dyer C., Kuncoro A., Ballesteros M., Smith N.A. (2016) Recurrent neural network grammars.
Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. San Diego, USA, 12–17 June 2016, pp. 199–209.
DOI: 10.18653/v1/N16-1024.

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

17

10.	 Kiperwasser E., Goldberg Y. (2016) Simple and accurate dependency parsing using bidirectional LSTM
feature representations. Transactions of the Association for Computational Linguistics, vol. 4, pp. 313–327.
DOI: 10.1162/tacl_a_00101.

11.	 Lample G., Ballesteros M., Subramanian S., Kawakami K., Dyer C. (2016) Neural architectures for named
entity recognition. Proceedings of the 15th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, San Diego, USA, 12–17 June 2016,
pp. 260–270. DOI: 10.18653/v1/N16-1030.

12.	 Kim Y. (2014) Convolutional neural networks for sentence classification. Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October
2014, pp. 1746–1751. DOI: 10.3115/v1/D14-1181.

13.	 Gehring J., Auli M., Grangier D., Yarats D., Dauphin Y.N. (2017) Convolutional sequence to sequence
learning. Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia,
6–11 August 2017, vol. 70, pp. 1243–1252.

14.	 Kalchbrenner N., Grefenstette E., Blunsom P. (2014) A convolutional neural network for modelling
sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore,
USA, 22–27 June 2014, vol. 1, pp. 655–665. DOI: 10.3115/v1/P14-1062.

15.	 Huang Z., Xu W., Yu K. (2015) Bidirectional LSTM-CRF models for sequence tagging. arXiv.org. Available
at: https://arxiv.org/abs/1508.01991 (accessed 20 January 2020).

16.	 rsoy O., Cardie C. (2014) Opinion mining with deep recurrent neural networks. Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October
2014, pp. 720–728. DOI: 10.3115/v1/D14-1080.

17.	 Wang W., Jialin Pan S., Dahlmeier D., Xiao X. (2016) Recursive Neural Conditional Random Fields
for Aspect-based Sentiment Analysis. Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Austin, USA, 1–5 November 2016, pp. 616–626.
DOI: 10.18653/v1/D16-1059.

18.	 Goodfellow I., Warde-Farley D., Mirza M., Courville A., Bengio Y. (2013) Maxout networks. Proceedings
of the 30th International Conference on Machine Learning, Atlanta, USA, 16–21 June 2013, pp. 1319–1327.

19.	 He K., Zhang X., Ren S., Sun J. (2016) Deep residual learning for image recognition. Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 26 June – 1 July 2016,
pp. 770–778. DOI: 10.1109/CVPR.2016.90.

20.	 Graves A., Jaitly N., Mohamed A. (2013) Hybrid speech recognition with deep bidirectional LSTM.
Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc,
Czech Republic, 8–12 December, 2013, pp. 273–278. DOI: 10.1109/ASRU.2013.6707742.

21.	 Hochreiter S., Schmidhuber J. (1997) Long short-term memory. Neural Computation, vol. 9, no 8,
pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.

22.	 Chiu J. P.C., Nichols E. (2016) Named entity recognition with bidirectional LSTM-CNNs. Transactions
of the Association for Computational Linguistics, no 4, pp. 357–370. DOI: 10.1162/tacl_a_00104.

23.	 Ma X., Hovy E. (2016) End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August
2016, pp. 1064–1074. DOI: 10.18653/v1/P16-1101.

24.	 Wang Y., Huang M., Zhu X., Zhao L. (2016) Attention-based LSTM for aspect-level sentiment
classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Austin, USA, 1–5 November 2016, pp. 606–615. DOI: 10.18653/v1/D16-1058.

25.	 Caruana R. (1993) Multitask learning: A knowledge-based source of inductive bias. Proceedings of the 10th
International Conference on International Conference on Machine Learning, Amherst, USA, 27–29 June 1993,
pp. 41–48. DOI: 10.1016/b978-1-55860-307-3.50012-5.

26.	 Hashimoto K., Xiong C., Tsuruoka Y., Socher R. (2017) A joint many-task model: Growing a neural
network for multiple NLP tasks. Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Copenhagen, Denmark, 7–11 September 2017, pp. 1923–1933.
DOI: 10.18653/v1/D17-1206.

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

BUSINESS INFORMATICS Vol. 14 No 1 – 2020

18

27.	 Grave E., Bojanowski P., Gupta P., Joulin A., Mikolov T. (2018) Learning word vectors for 157 languages.
Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, 7– 12 May 2018, pp. 3483–3487.

28.	 Jebbara S., Cimiano P. (2016) Aspect-based relational sentiment analysis using a stacked neural network
architecture. Proceedings of the 22nd European Conference on Artificial Intelligence, The Hague,
The Netherlands, 29 August –2 September, 2016, pp. 1123–1131. DOI: 10.3233/978-1-61499-672-9-1123.

About the authors

Egor I. Gribkov
Doctoral Student, Department of Data Processing Automation,
Tomsk State University of Control Systems and Radioelectronics,
40, Prospect Lenina, Tomsk 634050, Russia;

Machine Learning Engineer, TomskSoft LLC,
8, Nahimova Street, Tomsk 634034, Russia;

E-mail: drnemor@gmail.com

Yuri P. Yekhlakov
Dr. Sci. (Tech.), Professor;

Professor, Department of Data Processing Automation,
Tomsk State University of Control Systems and Radioelectronics,
40, Prospect Lenina, Tomsk 634050, Russia;

E-mail: upe@tusur.ru

ORCID: 0000-0003-1662-4005

DATA ANALYSIS AND INTELLIGENCE SYSTEMS

