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Abstract

The problem of assessing out-of-sample forecasting performance of event-history models is 
considered. Time-to-event data are usually incomplete because the event of interest can happen 
outside the period of observation or not happen at all. In this case, only the shortest possible time 
is observed and the data are right censored. Traditional accuracy measures like mean absolute or 
mean squared error cannot be applied directly to censored data, because forecasting errors also 
remain unobserved. Instead of mean error measures, researchers use rank correlation coefficients: 
concordance indices by Harrell and Uno and Somers’ Delta. These measures characterize not 
the distance between the actual and predicted values but the agreement between orderings of 
predicted and observed times-to-event. Hence, they take almost “ideal” values even in presence 
of substantial forecasting bias. Another drawback of using correlation measures when selecting 
a forecasting model is undesirable reduction of a forecast to a point estimate of predicted value. 
It is rarely possible to predict the timing of an event precisely, and it is reasonable to consider 
the forecast not as a point estimate but as an estimate of the whole distribution of the variable 
of interest. The article proposes computing Cox–Snell residuals for the test or validation dataset 
as a complement to rank correlation coefficients in model selection. Cox–Snell residuals for 
the correctly specified model are known to have unit exponential distribution, and that allows 
comparison of the observed out-of-sample performance of a forecasting model to the ideal case. 
The comparison can be done by plotting the estimate of integrated hazard function of residuals 
or by calculating the Kolmogorov distance between the observed and the ideal distribution of 
residuals. The proposed approach is illustrated with an example of selecting a forecasting model 
for the timing of mortgage termination. 
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Introduction

There are various problems in statistics 
and data analysis that require mode-
ling the time at which a certain event 

occurs. It can be the timing of a credit default 
in financial applications, time until death or 
recovery of a patient in survival analysis, the 
age of a woman at first marriage or age of the 
mother at first birth in social and demographi-
cal research. Such problems are considered in a 
branch of statistics called event-history analy-
sis. This branch has important peculiarities that 
distinguish event-history analysis from more 
traditional statistics. One of these peculiarities 
is data censoring.

Every study lasts for a finite period of time, 
and the event of interest does not necessarily 
occur within this period. More than that, there 
may be objects under study that never face the 
event: some debtors pay off the loan, so that 
default never occurs for them; some women 
never give birth to a child. As a result, the only 
thing that is known about these objects is that 
the time-to-event exceeds a certain value which 
is the duration of a timespan between the start 
of waiting for the event and the end of the study. 
Such observations are called right censored.

Techniques for analyzing censored data are 
quite well known; the classical textbook is [1]. 
Measuring accuracy of time-to-event forecasts 
is a less developed field of study. Partly this can 
be explained by the fact that event history mod-
els were commonly constructed not for fore-
casting but for academic purposes like testing 
hypotheses about the efficiency of a medical 
treatment or social policy, revealing the indi-
vidual attributes that are correlated with the 
duration of unemployment, etc.
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The past decade has shown a growing inter-
est in forecasting. On the one hand, nowadays 
event history models often find purely practi-
cal applications: financial risk assessment [2, 
3], predicting the length of crowdfunding cam-
paigns [4]. On the other hand, the expansion of 
machine learning and, in particular, the wide-
spread use of cross-validation procedures has 
given rise to assessing the quality of statistical 
models by their out-of-sample predictive accu-
racy [5, 6]. The special thing is that commonly 
used accuracy measures like the mean squared 
error or the mean absolute percentage error are 
inapplicable when dealing with censored data.

The article proposes an approach to model 
selection that is based on combination of (1) 
concordance coefficients for actual and pre-
dicted timings and (2) Cox–Snell residuals. 
Both concordance coefficients and residu-
als are calculated for a test sample. The pro-
posed approach is illustrated with an example 
of building a forecasting model for the timing 
of mortgage prepayment.

The next section describes the basic concepts 
that have to be defined or explained because of 
peculiarities of the event-history analysis. Sec-
tion 2 contains a review of measures of predic-
tive accuracy that can be applied to censored 
time-to-event data. Section 3 is devoted to Cox–
Snell residuals and their use for model assess-
ment. The use of Cox–Snell residuals for model 
selection is illustrated with a real data example 
in section 4, which is followed by a conclusion.

1. Probabilistic model  
of event occurrence

Time of event occurrence is modeled as a 
nonnegative random variable that can be either 
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discrete or continuous according to the nature 
of the process under study and available data. 
Here we consider only the continuous case. 
The distribution of this random variable can be 
characterized by the following functions that 
play a central role in event history analysis.

Survival function S(t ) reflects the probabil-
ity that time-to-event exceeds the value of the 
argument:

S(t ) = P (T > t).

The term refers to actuarial and medical 
applications where the event of interest is death 
of an insured person or a patient, so that the 
value of the survival function is the probability 
of survival until time t. 

Hazard function  h(t ) reflects changes in the 
probability of event occurrence over time:

Intgrated hazard function H(t
 
) (also called 

cumulative hazard) does not have a clear inter-
pretation but plays an important role in this 
article:

.

Te terminology differs from one area of appli-
cation to another, and the same functions are 
known under different names. Survival function 
is sometimes called reliability function, and the 
hazard function is also known as the mortality 
intensity rate or the force of mortality.

Typically, there are two aspects of event his-
tory that a researcher is interested in.

The first aspect is a relation between the 
probability of an event’s occurrence in the near 
future and the time of waiting for the event. 
This relation is conveniently represented by the 
hazard function.

The second aspect is a relation between 
the probability of an event’s occurrence and 
explanatory variables (covariates). There are a 

variety of regression models that link the dis-
tribution of time with covariates; we refer an 
interested reader to books [1, 7] for a detailed 
review. Four event-history models that are 
used in this article for illustration purposes are 
briefly described below.

Lognormal and generalized gamma regres-
sions are special cases of an accelerated failure-
time model, which means that they have a lin-
ear form representation:

.

Here  denotes the row vector of explanatory 
variables,  is the column vector of estimated 
coefficients, and  stands for a random error. 
Apart from covariates vector  includes a unit 
element that corresponds to an intercept term, 
so that . Lognormal 
and generalized gamma regressions differ only 
in assumed distribution of a random error.

Gompertz and Cox regression are propor-
tional hazard models which means that they 
assume the hazard function to be proportional 
to covariates:

.

Here h
0
(t ) denotes the so-called baseline 

hazard (the hazard that corresponds to zero 
effect of explanatory variables). The Gompertz 
model assumes that the hazard exponentially 
grows or declines with time: h

0
(t) = e  , where   

is an estimated parameter of the baseline distri-
bution. Cox regression does not impose restric-
tions on the baseline hazard which is estimated 
via the nonparametric technique. As well as 
other considered models, the Cox regression 
restricts a functional form of relation between 
the time-to-event distribution and explanatory 
variables, but (in contrast to other models) it 
permits any kind of dependence between the 
probability of event occurrence and time.

Estimating procedures for these models 
are implemented in statistical packages and 
described in textbooks [1, 7]. The only thing 
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important for our purposes is that each of these 
regressions allows a researcher to obtain esti-
mates of survival and integrated hazard func-
tions for arbitrary values of explanatory varia-
bles . This means the possibility to predict the 
event’s occurrence under the given conditions.

2. Predictive accuracy measures:  
A review

Measures based on averaging prediction 
errors. This group includes the most widely 
used metrics of forecasting accuracy for the 
models with quantitative response: mean abso-
lute error (MAE), mean squared error (MSE), 
mean absolute percentage error (MAPE) etc. 
Although there are examples of their applica-
tion in event-history analysis [2, 5, 8], these 
examples are mere exceptions. In most cases, 
data are subject to censoring so that the dif-
ferences between actual and predicted tim-
ing of events are not precisely known and can-
not be averaged. This problem can easily be 
solved under the assumption that the predic-
tion errors follow a certain parametric fam-
ily of distributions. In this case, one may esti-
mate the parameters of this distribution via 
maximum likelihood and compute the corre-
sponding mean. However, we have not found 
this approach in academic literature. A possi-
ble explanation is that researchers avoid mak-
ing additional assumptions

Papers [2, 8] consider calculating the mean 
absolute error only for uncensored observa-
tions that contain exact timings of event occur-
rence. This approach has a substantial draw-
back because censoring depends on those 
timings. The longer the observer has to wait for 
an event, the greater is the probability that the 
observation period will end before the occur-
rence and the observation will be censored. 
Consequently, exact timings will be known 
mostly in those cases when they are small, and 
the mean absolute error will take into account 
only these observations. As a result, a model 
that predicts early occurrence will be preferred 

to a model that gives unbiased forecasts. One 
can say that excluding censored observations 
leads to sample truncation which is no less 
troublesome than censoring [1]. 

Rank correlation coefficients and concord-
ance indices. Harrell’s concordance index [9], 
or C-index, is probably the most widely used 
predictive accuracy measure in event history 
analysis. Let random variables T

1
 and T

2
 denote 

times of event occurrence in two randomly 
chosen independent observations, and  and 

 denote corresponding predictions. Harrell’s 
C-index is defined by the following expression: 

                     .	 (1)

One advantage of this coefficient is its clear 
interpretability: if time-to-event differs in two 
cases, then C equals the probability that a model 
predicts a greater value in the observation with 
a greater actual time. The largest possible value 
of C is one and it is achieved when rankings of 
actual and predicted values are completely con-
cordant, so that when the event of interest occurs 
earlier, the model always predicts earlier occur-
rence too. The lower bound for C-index is zero 
which means complete discordance of actual 
and predicted rankings (the earlier the event 
happens, the longer is predicted waiting time).

There are various estimators for the concord-
ance coefficient in the presence of censoring. 
One of them is a statistic originally proposed by 
Harrell et al. [9], another example is Uno’s esti-
mator [10] that is gaining growing popularity. 
Apart from the concordance index, Somers’ D 
correlation coefficient can be used for the same 
purpose [11, 12].

The mentioned metrics share a drawback. 
They measure only the association between 
rankings of actual and predicted values, which 
means that they assess a model’s ability to dis-
tinguish the cases where an event occurs rela-
tively early from those where the event occurs 
relatively late. It is not a predictive accuracy 
in the sense that it does not reflect the differ-
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ence between real and predicted values. Sup-
pose that the model provides forecasts that are 
exactly ten times greater than observed values. 
One would hardly call this forecast accurate, 
but the concordance index or any other rank 
correlation coefficient would achieve its high-
est value of one because the predicted ranking 
is perfectly concordant with the actual one.

Sometimes it is a model’s ability to detect 
objects with relatively long time-to-event that 
draws the attention of a researcher. It can be so 
if, for example, the aim of the study is reveal-
ing markers of early recovery or death of patients 
[13]. However, in many practical cases the ana-
lyst is interested in the absolute value of an 
explained variable. Paper [14] provides an exam-
ple of such a study in medicine, but such interest 
seems to be more common in financial applica-
tions where times of defaults and prepayments 
determine cash flow [2, 3, 15].

Another class of measures used for evaluat-
ing the predictive power of event-history mod-
els consists of classification metrics that eval-
uate accuracy of binary prediction (whether 
an event occurs in a certain period of time or 
not). This class has been actively developed 
in the last decade [16, 17] and deserves atten-
tion, but we do not review these metrics here, 
because they represent a substantially differ-
ent approach to forecasting. However, Har-
rell’s C-index can be considered also as a clas-
sification metric [18].

3. Cox–Snell residuals  
and their application  

to predictive power assessment

Consider a sample , where 
T

i
 denotes time to event and  is the vector 

of explanatory variables in observation i. Let 
 denote an estimate for the integrated 

hazard function of T
i
  random variables (it can 

be obtained from some regression model). A 
Cox–Snell residual [19] in observation i is 
defined as follows: .

If the estimate  coincides with the true 
function , then the Cox–Snell residuals 
follow exponential distribution with unit mean. 
In this case, the integrated hazard function of 
the residuals is H CS(t ) = t.

Below we describe the visual test that is com-
monly used for regression diagnostics. It is 
based upon the Cox–Snell residuals and is per-
formed in three steps.

1. Estimate the regression model and com-
pute Cox–Snell residuals for each observation.

2. Compute the estimate of the integrated 
hazard function of the residuals . If some 
observations on time-to-event are censored, 
the corresponding residuals are also censored, 
which should be taken into account. We use the 
Nelson–Aalen technique [20, 21] to estimate 
the integrated hazard from censored data.

3. Plot the estimate of the integrated hazard 
against residuals . Further we refer to this 
plot as the Cox–Snell residuals plot. In case 
of a correctly specified model, the integrated 
hazard estimate approximately lies on the line  
H(t ) = t (Figure 1a). An example for incorrect 
model specification is presented in Figure 1b.

This test is widely known and described in 
textbooks; Cox–Snell residual plots are pre-
sented by researchers to assess the goodness-
of-fit of models they use [7, 22, 23]. We have 
not found examples of using Cox–Snell residu-
als for evaluating forecasting accuracy; the pos-
sible reasons are discussed in the conclusion to 
this article. Further Cox–Snell residuals cal-
culated for the test sample are called out-of-
sample residuals because they characterize the 
model’s performance outside the sample used 
for estimation.

Out-of-sample residuals can be used to detect 
the systematic prediction bias. Consider a 
case where a fitted hazard function is с times 
greater than the true hazard: .  
Then the Cox–Snell residuals are also с times 
greater that the integrated hazard function: 

. As a result, a residual 
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plot is higher or lower (depending on the value 
of с) than the line H(t ) = t (Figure 1c). This sit-
uation is practically impossible when assess-
ing the regression performance in the training 
sample and is unlikely even when examining 
out-of-sample predictions if the test sample 
was selected at random. Such prediction bias is 
more likely to be found when performing exter-
nal validation, evaluating the model’s perfor-
mance with new data.

The residual plot is a preferable tool for man-
ual model selection, while automatic selection 
requires numerical measure for goodness-of-
fit. Further we use the Kolmogorov distance 
between the survival estimate for the Cox–
Snell residuals  and the 
corresponding function for unit exponential 
distribution  as such a metric:

                   .	 (2)

Here t
max

 denotes the largest time in the sam-
ple (it can be censored). We consider only the 
set [0; t

max
], because the Nelson–Aalen method 

does not allow estimating the right tail of the 
distribution. The corresponding survivor func-
tion at t

max
 has not reached zero yet, and there is 

no data to estimate it for the values of the argu-
ment greater than t

max
. 

The next section contains an example of 
using this metric for predictive model selection.

4. Example: Modeling  
mortgage prepayment

The example uses data from a large mortgage 
agency. The data contain more than 280,000 
observations on mortgage contracts concluded 
from 2001 to 2013. The explained variable is 
the time between a conclusion of a contract 
and its prepayment. Observations are right-
censored due to the following reasons:

 The end of the observation period: we use 
the data gathered on 1 January 2014, these data 
do not contain information on exact payment 
date for the loans that were not paid by that date.

(а)

(b)

(c)
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Fig. 1. Examples of Cox–Snell residuals plot for  
(a) a correctly specified model;  

(b) a model based on inappropriate time-to-event distribution; 
(c) a model with systematic prediction bias
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 The termination of the contract: if the pre-
payment did not occur, then the observation is 
treated as right-censored as if there is a pos-
sibility of prepayment after the termination 
date. This is a statistical trick convenient when 
objects under study are exposed to mutually 
exclusive events (like prepayment and payment 
in time in our example). It is convenient to sup-
pose that both events happen but only the first 
of them is observed.

 Mortgage default. This is another event that 
prevents prepayment.

This dataset is used for estimation of several 
event-history models that differ in (a) assumed 
distribution of the explained variable and its 
relation to the covariate vector (lognormal 
and generalized gamma regressions, Cox and 
Gompertz models), and (b) the set of explan-
atory variables (“short” and “long” models). 
Both “short” and “long” models include attrib-
utes of a loan, of a main borrower and of a sub-
ject of mortgage. The “short” model accounts 
for the interest rate of the loan, the credit term, 
payment-to-income ratio, age of the main bor-
rower, type of employment of the main bor-
rower and the number of rooms in the subject 
of mortgage. The “long” model includes, apart 
from all the mentioned attributes, sex, mari-
tal status and education of the main borrower, 
the number of co-borrowers, regional effect 
(measured according to the agency’s rating 
of socio-economic development of regions of 

Russian Federation that divides all the regions 
into three groups with low, moderate and high 
level of development), the type of the mortgage 
subject (house or apartment), the ratio of living 
space to total space, the ratio of total amount of 
planned payments to the price of the mortgage 
subject, and a loan-to-value ratio.

The whole dataset is randomly partitioned 
into training and test samples in proportion at a 
ratio 60:40 respectively.

Plots of out-of-sample Cox–Snell residu-
als for eight estimated models are given in the 
Appendix. The distances between observed and 
theoretical distributions of the residuals are 
calculated according to equation (2) and pre-
sented in Table 1 among with Harrell’s coeffi-
cient values.

It is seen from Table 1 that the concordance 
index is practically the same for different base-
line distributions but depends on the choice 
of covariates: the “long” model stably outper-
forms the “short” one. The probability of con-
cordance between actual and predicted values 
is greater for the “long” model by approxi-
mately 0.02. An analyst may consider it to be 
a minor discrepancy but it is stable. Repeating 
the random split into training and test samples, 
we found the difference between the values of 
the C-index for “long” and “short” models to 
be essentially the same. On the contrary, Kol-
mogorov’s distance between ideal and observed 
distributions of Cox–Snell residuals substan-

Table 1. 
Out-of-sample performance of mortgage prepayment models

“Short” model “Long” model

Harrell’s C-index Kolmogorov distance Harrell’s C-index Kolmogorov distance

Lognormal 0.593 0.078 0.612 0.066

Generalized gamma 0.593 0.015 0.610 0.009

Gompertz 0.592 0.059 0.608 0.063

Cox 0.593 0.007 0.609 0.014
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tially depends on the choice of the baseline dis-
tribution: generalized gamma regression and 
the Cox model provide better goodness-of-fit 
than lognormal and Gompertz regressions both 
in the case of “short” and “long” models.

A natural question is: do predictions obtained 
from these models really differ? Figure 2 pre-
sents plots of estimated survivor functions 
obtained from the mentioned models for a loan 
with typical values of explanatory variables:

 gender of the main borrower: male;
 marital status of the main borrower: mar-

ried;
 education of the main borrower: higher edu-

cation or doctoral degree;
 employment type of the main borrower: pri-

vate sector employee,
 number of co-borrowers including the main 

borrower: 2;
 age of the main borrower: less than 35 years;
 payment-to-income ratio: from 20% to 35%;
 type of the mortgage subject: apartment;
 location of the mortgage subject: moderately 

developed region;
 number of rooms in the mortgage subject: 2;
 annual interest rate: less than 11,5% (low-

risk interest rate);
 ratio of living space to total space of the 

mortgage subject: from 50% to 70%;
 loan-to-value ratio: from 50% to 70%;
 credit term: more than 180 months (long 

term loan);

 ratio of total amount of planned payments to 
the price of the mortgage subject: from 1 to 1.82.

The probability of survival in the next several 
years for a newly made loan is shown in Figure 
2a, while Figure 2b presents the same probabil-
ity for a five-year old loan (the conditional sur-
vival function with respect to condition {T > 5}). 
The horizontal axis represents days after the start 
of the loan term, and the vertical axis represents 
the probability that the loan is not paid off until 
that time. Survival curves obtained from the Cox 
model (“S_cox” line) and from the generalized 
gamma regression (“S_gamma”) practically 

coincide in both figures. The curve estimated 
from the Gompertz regression (“S_gomp”) 
deviates from the others and shows a greater risk 
of prepayment. On the contrary, the lognormal 
curve (“S_ln”) predicts the lowest probability 
of prepayment, and deviates from gamma and 
Cox curves for an “old” loan but not in the first 
years of a mortgage credit. Plots of out-of-sam-
ple Cox-Snell residuals that are given in Appen-
dix, show that the gamma model correctly pre-
dicts the distribution of prepayment times and 
the Cox regression performs almost as well. 
Residuals from the Gompertz regression have 
a distribution that is completely different from 
exponential, and the lognormal model provides 
residuals that lack goodness-of-fit in the right 
tail of the distribution. 

Hence, if one chooses a model on the basis of 
Harrell’s index, then the lognormal regression 
is chosen which leads to underestimation of the 
probability of prepayment. Taking into account 
out-of-sample Cox–Snell residuals, an analyst 
would prefer either generalized gamma regres-
sion or the Cox model, both resulting in simi-
lar forecasts that agree with the distribution of 
prepayment times in the test set. From Figure 2 
it follows that the estimated probability of pre-
payment substantially depends on the choice of 
forecasting model. The difference is especially 
large for a long-term forecast horizon: the dis-
tance between the survival curves in Figure 2b 
exceeds 20 percentage points in the right side of 
the plot. However, the difference between two-
year-ahead forecasts already exceed 5 percent-
age points.

Conclusion

Cox–Snell residuals and the correspond-
ing visual test for model specification are well-
known and covered in both research papers 
and textbooks. However, these residuals do not 
seem to be a popular tool for assessing predic-
tive accuracy. This is an important point that 
naturally raises a question: are they really use-
ful? The example considered in a previous sec-
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tion was presented to demonstrate the benefits 
of examining out-of-sample residuals, but now 
it is time to make a substantial caveat. 

Cox–Snell residuals alone cannot be regarded 
as a measure of predictive error. They only allow 
us to compare the actual distribution in the data 
with the distribution that should be observed 
according to the model. This comparison can 
be performed either on the training sample (as is 
usually done), or on the test sample (as we sug-
gest for evaluating forecasting performance). 
Note that a model with no covariates, that yields 
the same prediction for all observations, may 
produce practically ideal exponential Cox–
Snell residuals if a proper distribution for an 
explained variable is chosen. One need not think 
that such model would outperform a regression 
that includes informative covariates but has 
improper baseline distribution that would be 
detected by examining the residuals plot.

On the contrary, rank correlation and con-
cordance coefficients are a useful tool for select-
ing a set of explanatory variables, but do not 
characterize the ability of a model to predict 
the whole distribution of event timings. More 
common problems of regression analysis do not 
often require such prediction, and an analyst is 
interested mostly in a point forecast that can be 
obtained by estimating the mean or median of 
an explained variable. However, a time of event 
occurrence can almost never be characterized 
by a single number and reducing the forecast to 
a point estimate is counterproductive. Quan-
tiles are of no less importance than the mean, 
and as the quantile function uniquely charac-
terize the distribution of a random variable, one 
can say that the whole distribution is important. 
Often researchers do not pay much attention to 
distribution selection and prefer to use the Cox 
model that does not require parameterizing a 
baseline hazard. The example presented in this 
article demonstrates that a relatively simple par-
ametric model can outperform Cox regression 
even on a very large sample. The Cox model is 
prone to overfit, and it restricts the functional 
form of relation between hazard and covariates, 
so that the shape of the hazard function is essen-
tially the same for all values of explanatory vari-
ables. Parametric models can account for other 
forms of dependence.

Examining the concordance index and the 
Cox–Snell residuals plot, a researcher can 
assess both the choice of explanatory varia-
bles and the selected baseline distribution. This 
combination gives a full picture of the mod-
el’s out-of-sample performance. Of course, 
it would be more convenient to have a single 
metric that would allow unambiguous ranking 
for a set of models according to their forecast-
ing accuracy, but at the moment such a metric 
seems to be unavailable. 

Appendix

Out-of-sample Cox–Snell residuals plots for 
mortgage prepayment models:

(а)
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Fig. 2. Estimated survival functions for 
 (a) a new loan; (b) a five-year loan
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