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Abstract

This work analyses the firm failure process stages using the Bayesian network as a modelling tool 
because it allows us to identify causal relationships in the firm profile. We use publicly available data 
on French, Italian and Russian firms containing five samples corresponding to periods from one to five 
years before observation.  Our results confirm that there is a difference between the stages of the failure 
process. For firms at the beginning of a lengthy process (3–5 years before observation), cumulative 
profitability is the key that determines liquidity. Then, as the process develops, leverage comes to the 
fore in the medium term (1–2 years before observation) for economies with more uncertainty. This 
factor limits the opportunities for making a profit, leading to further development of the failure. There 
are also national specifics that are caused, firstly, by the level of economic development and, secondly, 
economic policy uncertainty.
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Introduction

The study of firm failure is one of the key 
issues in business research. It can be 
divided into two subdomains [1]: the 

first is failure prediction, and the second is the-

oretical and empirical investigations of the fail-
ure process. The firm failure process allows us 
to consider the behaviour of failing firms in the 
longer perspective [2, 3], while failure prediction 
studies often focus on financial performance 
only one or few years before distress [4, 5].
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However, the short-term forecasting mod-
els’ main weakness is that the firms’ obliga-
tions often are longer than the period during 
which the risk of default is estimated with per-
fect accuracy [6]. Thus, the company should be 
analysed from a longer perspective. Moreover, 
while some firms with a certain financial per-
formance profile fail, others with the same pro-
file can overcome the difficulties and return to 
normal operations. Therefore, many authors 
argue the existence of different types of failure 
trajectories that may lead or may not lead a firm 
to default depending on its prehistory and cur-
rent abilities [1, 7–9].

The existence of different firm failure pro-
cesses (FFP) is a well-established fact sup-
ported by much theoretical and empirical 
research. However, there is no consensus in 
the scientific community not only about the 
exact definition of these processes but even 
about the number of variants. For example, 
Argenti [10] detected three failure trajectories 
of decline in firms’ financial health; Ooghe 
and de Prijcker [8] describe four different 
types of failure processes; du Jardin [11] iden-
tifies seven types of FFP.

These differences are explained, firstly, by the 
methodology used, for example, works [8, 10] 
are based on the case method, and du Jardin 
[11] analyses empirical data using self-organis-
ing maps. Second, the authors view the process 
from different angles. Papers [10, 11] focus on 
financial results (this approach is also used in 
many other works [1, 2, etc.]), while [8] con-
siders the problem through the lens of manage-
ment efficiency.

In this work, we focus on defining the specif-
ics of the various stages of a firm’s failure pro-
cess. Three research questions correspond to 
this goal:

♦♦ RQ1: How do the causal relationships 
between the financial ratios describing the 
firm’s state change in different periods before 
the default?

♦♦ RQ2: Are there differences in firm failure 
processes that are determined by country 
specifics?

♦♦ RQ3: How does the degree of economic pol-
icy uncertainty affect the firm failure pro-
cess?

We use the Bayesian Network as a model-
ling tool because it allows us to identify causal 
relationships in the firm profile. We use pub-
licly available data on French, Italian, and 
Russian companies which present the firms’ 
financial ratios from one to five years before 
the failure.

Our results confirm that there is a difference 
between the stages of the failure process (RQ1). 
For firms at the beginning of a lengthy process 
(3–5 years before observation), cumulative 
profitability is the key that determines liquidity. 
Then, as the process develops, leverage comes 
to the fore in the medium term (1–2 years 
before observation) for economies with more 
uncertainty. This factor limits the opportunities 
for making a profit, leading to further develop-
ment of the failure. There are also national spe-
cifics that are caused, firstly, by the level of eco-
nomic development (RQ2) and, secondly, by 
economic policy uncertainty (RQ3).

The rest of the paper is organised as follows. 
After reviewing sources analysing FFP, we 
present basic concepts of Bayesian networks.  
Next, we describe the datasets and pre-pro-
cessing operations that are necessary to prepare 
the data for modelling. In the last part, we ana-
lyse the network structures obtained and dis-
cuss further research to extend the proposed 
approach.

1. Literature review

The first research into bankruptcy forecast-
ing began in the 1930s [12]. These studies 
mainly focused on comparing individual rates 
of successful and unsuccessful firms. How-
ever, the number of published works was rela-
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tively small. The first multivariate model was 
presented by Altman [13], who used discri-
minant analysis based on five financial ratios. 
This model, also known as the Z-score, ush-
ered in an era of intense research. Researchers 
have developed many predictive models using 
both statistical techniques and machine learn-
ing. It should be noted that models based on 
machine learning, in general, provide more 
excellent performance [14, 15]; however, the 
Z-score model with some modifications also 
remains relevant [4].

A common feature of predictive models is 
that they treat the failure prediction problem as 
a binary classification task. In this case, most 
often, the data of financial statements for a 
small number of periods before default is con-
sidered. In fact, these models are constructed 
on cross-sectional data; ratios from different 
time periods are often combined in one observa-
tion point; thus, the firm’s individual dynamics 
are not taken in the account. Such an approach 
ignores the fact that companies change over 
time, all of which causes various problems and 
limitations [16]. In short, a firm’s profile meas-
ured at time t cannot be reduced to measure-
ments at time t – 1 alone, since the default, in 
most cases, is the result of a long process [9] 
and the discriminating power of ratios is unsta-
ble over time [17].

There are models based on observations of 
one, two or more years before failure at time t 
which are believed to be able to predict the state 
at years t + 1, t + 2, or even t + 10 [2, 18]. How-
ever, because they do not treat firm failure as a 
process, they have the same limitations as ana-
lysed in [16].

Some predictive studies use techniques that 
allow us to consider both the dynamics of 
firms’ populations and their unique character-
istics, such as panel regression [19] or survival 
analysis [20]. However, in general, the number 
of such works in the flow of research on predic-
tive models is relatively small.

1.1. Firm failure process

Argenti [10] was perhaps the first who started 
to study the firms’ failure process. He identi-
fied three patterns of decline and found that 
failing firms do not crash immediately after 
they decline. Some can delay the onset of bank-
ruptcy for years.

D’Aveni [7] empirically tested Argenti’s find-
ings [10] that are based on case studies. Accord-
ing to both authors, the three failure processes 
are the following:

♦♦ Sudden decline, that is, the rapid collapse of 
the firm. This process of failure is typical of 
small or competitively disadvantaged firms 
that reoriented their strategy too boldly.

♦♦ Gradual decline, i.e., a slow and gradual pro-
cess typical of bureaucratic and poorly man-
aged firms that cannot adapt to the external 
environment.

♦♦ Lingering decline. This process is typical of 
firms that decline either rapidly or gradu-
ally but delay bankruptcy for several years. 
Such post-decline firms often centralise to 
be a threat rigid and exhibit strategic paraly-
sis and downsizing activity.

Based on these earlier studies of failure pro-
cesses, [1] postulate the existence of three types 
of failure process: 

♦♦ short-run process when potential failure can 
be detected only about 1 year after the last 
reporting; 

♦♦ mid-run process corresponds to a situation 
where the first signals of a potential failure 
can be detected 2–3 years before the default; 

♦♦ long-run process when the potential failure 
can be detected more than 3 years before the 
default. 

Short-term processes are more suitable for 
describing the situation when a firm with good 
performance declines suddenly. Mid-term and 
long-term processes, in turn, can describe two 
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situations: the firm never becoming success-
ful enough or the firm becomes worse step by 
step.

To empirically check their proposition, the 
authors of [1] analysed 1234 bankrupt man-
ufacturing SME’s from different European 
countries. They applied four clustering meth-
ods on the eight different sets of variables (pre-
sented in [4]) over the last five years before the 
bankruptcy. Their results confirm the exist-
ence of three types of failure processes, dif-
fering in time scale and, therefore, in decline 
rate.

Summarizing their results, the following 
can be noted. For short-run processes, the 
failure risk (FR) is observable only in year 
t – 1 and negative annual profitability is the 
most important contributor. For mid-run 
processes, the failure risk can be detected in 
years t – 2 and t – 3, when negative annual 
profitability is also the most important con-
tributor, followed by high leverage. For firms 
involved in a long-run process, the first sig-
nals can be detected up to t  –  3; they are 
annual and cumulative profitability and 
leverage. These ratios contribute to FR also 
in years t – 2 and t – 1. Liquidity as an indi-
cator of FR is important only for the last 
stages of mid-term and long-term processes.

However, this view of failure processes is 
not the only one. For example, authors of 
[8] present four different processes explained 
through the lens of management: (1) unsuc-
cessful start-up due to the lack of managerial 
or industry-related experience, (2) ambigu-
ous growth of firms with over-optimistic man-
agement, (3) unbalanced growth induced by 
management’s dazzle, and (4) an apathetic 
mature firm managed by people lacking moti-
vation and commitment.

In a series of works [6, 9, 11] du Jardin 
models various failure processes (also called 
trajectories or profiles) using self-organizing 
maps (SOM). The basic idea of the applica-

tion of SOM to study individual trajectories 
of firms is straightforward. Let us have panel 
data (observations of objects correspond-
ing to measurements made in different time 
periods). If all the observations are classi-
fied on a SOM as if they were independent, 
it is possible to study the change of state of 
a given object along time [21]. To the best of 
our knowledge, this approach was first used 
in [22] to analyse the financial state of Span-
ish banks. The author noted that the trained 
SOM model groups the entities together 
according to their financial state similari-
ties. Thus, new observations will be placed 
in a particular zone (bankrupts or non-bank-
rupts) according to the more activated neu-
rons on the map. Therefore, it is possible to 
observe the bank’s evolution using financial 
information from various years.

Briefly, du Jardin’s methodology can be 
described as follows: at the first step, all firms 
are mapped to SOM, and the firm’s observa-
tions at different points in time are considered 
independent. Then the trajectories of firms 
represented by the list of neurons that corre-
spond to observations of one entity at sequen-
tial time points are built. In the last step, the 
trajectories are grouped into meta-classes, 
which can be viewed as processes leading or 
not leading to default. The author’s results 
confirm that the generalisation error achieved 
with an SOM remains more stable over time 
than that achieved with conventional fail-
ure models (discriminant analysis, logis-
tic regression, Cox’s survival model, neural 
networks and ensemble methods). However, 
more importantly in the context of our dis-
cussion, du Jardin identifies a different num-
ber of processes that show the movement of 
firms between regions with different proba-
bility of failure: six in [9], seven in [11], and 
eight in [6]. This difference can be explained 
by the impact of the data used (specific years 
and time lag before default) and the impact of 
the technique of trajectories’ grouping. This 
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may not be significant in terms of the model’s 
performance since these works’ primary goal 
is to improve prediction accuracy by consid-
ering the firm’s prehistory. However, even if 
this approach improves the predictive capabil-
ities, it does not allow us to analyse the failure 
processes, since it is based on the black-box 
model.

So, we can conclude that the existence of 
different firm failure processes is a well-estab-
lished fact; however, there is no consensus 
regarding these processes’ definition. To con-
tribute to the solution of this problem we pro-
pose to use a causality modelling technique, 
namely Bayesian networks. Such an approach 
allows us to identify causalities between finan-
cial ratios at different periods before failure, 
which can shed light on the firm’s dynamics.

1.2. Bayesian networks  
and causality modelling

Intuitively, causality can be defined as influ-
ence through which a cause contributes to the 
production of an effect, while the cause is par-
tially responsible for the effect, and the effect 
is partially dependent on the cause [23]. Com-
plex systems are characterised by the pres-
ence of multiple interrelated aspects, many of 
which relate to the reasoning task. Thus, one 
of biggest challenges is the extraction of causal 
relationships from empirical data and con-
struction of models of complex systems that 
allow causal inference.

The declarative representation approach 
[24] is based on a causal model of the sys-
tem about which we would like to reason. This 
model encodes our knowledge of how the sys-
tem works and can be manipulated by various 
algorithms that can answer questions based on 
the model. 

To communicate causal relationships, a 
causal model uses a combination of equa-
tions and graphs. Mathematical equations 

that express the form of causality (e.g., lin-
ear, or non-linear) are symmetrical objects, 
so relationships of variables can be inverted 
using simple manipulations. For this reason, 
equations are augmented with a diagram that 
declares the directions of causality [25]. Such 
a model can be built manually based on expert 
knowledge or automatically using machine 
learning algorithms [26].

According to [27], causal inference extends 
predictive modelling (which involves estimat-
ing the conditional distribution p(Y|X) of the 
variables Y and X on the basis of a random 
sample) to causal modelling, where the model 
should be able to estimate the conditional dis-
tribution p(Y|X||M) when manipulated M.

There are several approaches to the con-
struction of causal models, in particular struc-
tural equation modelling (SEM) and Bayesian 
networks (BN). The SEM [28] is limited, first, 
in that it requires a priori hypotheses about 
causality in the system. Secondly, it supposes 
only linear types of relationships. Therefore, 
in our study, we will use Bayesian networks, 
since they are free of such disadvantages. The 
structure of the network and its parameters can 
be extracted from data; relationships between 
variables are probabilistic.

A Bayesian network encodes the joint prob-
ability distribution (X) of a set of m ran-
dom categorical variables, X = (X

1
, ..., X

m
), as 

a directed acyclic graph (DAG) and a set of 
conditional probability tables (CPT). More 
formally, it is a pair , where  is the 
DAG whose vertices correspond to the vari-
ables in X and arcs represent direct depend-
encies between variables, and  is a collection 
of functions that define the behaviour of each 
variable in X given its parents in the graph 
[27,29]. 

The representation of the full joint table  
(X) takes exponential space in the number of 

variables m. This complexity is avoided thanks 
to the Markov condition, which states that in a 
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Bayesian network every variable is condition-
ally independent of its non-descendant and 
non-parents. Thus, for the set of random vari-
ables X in , a density (X) is

,

where parents
 
(X

i 
) denotes the set of variables 

X
j
  X, such that there is an arc from node j to 

node i in the graph.

In other words, each node in the graph  that 
corresponds to a variable has an associated 
CPT that contains the probability of each state 
of the variable given its parents in the graph. 
Such a presentation allows us to describe the 
structure of complex distribution compactly 
[30] and can be interpreted from two points of 
view [24]. First, the graph is a compact rep-
resentation of a set of independencies that 
hold in the distribution. The other perspec-
tive is that the graph is a skeleton for factor-
ising distribution: it breaks up the distribution 
into smaller factors, each over a much smaller 
space of possibilities.

Bayesian networks have many advantages 
[24]. First, this type of presentation is inter-
pretable by a human. Second, such a struc-
ture allows us to answer queries, i.e., com-
puting the probability of some variables given 
evidence of others (inference). Third, models 
can be constructed whether by a human expert 
or automatically by learning from data. In our 
study, we will use the latter approach – data 
driven learning.

From a formal perspective, the Bayesian net-
work represents the underlying joint distribu-
tion, including probabilistic properties such as 
conditional independence. On the one hand, 
it is a more compact representation of com-
plex multivariate distributions. On the other 
hand, a “good” network structure should cor-
respond to causality, in that an edge X  Y 
often suggests that X “causes” Y, since each 
value x of X specifies a distribution over the 
values of Y [24, 25].

The process of construction of Bayesian net-
works from data  includes two stages: gen-
eration of the graph representing the optimal 
structure of BN (structure learning), and defi-
nition of conditional probabilities (parameter 
learning). Many authors apply BN to prob-
lems in different domains: for example, busi-
ness [31], ecology [32], healthcare [33], fault 
diagnosis in engineering systems [34] and 
many others [35].

It should also be noted that there is an exten-
sion of the BN model for longitudinal data, 
namely, dynamic Bayesian networks. However, 
dynamic models are based on the assump-
tion that the process under study is stationary, 
i.e., its parameters do not change over time. 
According to [1] and other researchers, the 
firm failure process is not stationary. There-
fore, in our study, we generate BN structures 
for different time intervals independently, 
supposing that comparing these structures will 
shed light on the peculiarities of FFP stages.

1.3. Inference and explanation  
in Bayesian networks

Inference is the process of computing new 
probabilistic information from a Bayesian net-
work based on some evidence. It computes joint 
posterior probabilities for a set of variables given 
evidence which are the values on other varia-
bles. Inference is an NP-complete task, there-
fore there are algorithms that implement an 
exact inference but also algorithms for approxi-
mated inference that can converge slowly and 
even not exactly but that can in many cases be 
useful for applications. This capability allows 
us to use BN for supervised classification which 
aims at assigning labels to instances described 
by a set of predictor variables [36].

However, unlike many machine learning 
methods, a Bayesian network can be used not 
only for prediction but also for explanation 
[37]. Explanation tasks in Bayesian networks 
can be classified into three categories [38]: 
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♦♦ explanation of a model – presentation of the 
domain knowledge; 

♦♦ explanation of reasoning – presentation of 
the results inferred and reasoning process 
that produced them; 

♦♦ explanation of evidence, i.e., determination 
which values of the unobserved variables jus-
tify the available evidence. 

Since our goal is to analyse the BN structures 
that model firms at different times before fail-
ure, explaining the model is the most impor-
tant issue.

In [39] the authors give examples of model 
explanations. These explanations can include 
properties of nodes and their mutual influence 
that can be negative or positive.  The influence 
of node A on node B is positive when higher 
values of A make high values of B more prob-
able. The definitions of negative influence and 
negative link are analogous.

2. Data

Relevant data is needed to build causal mod-
els for firms that filed for default years after the 
measurement. In addition, an interesting ques-
tion is the comparison of the FFP for differ-
ent countries. Therefore, we chose three coun-
tries for analysis: France, Italy, and the Russian 
Federation. 

To compare the economies on a macro-
level, we use the Gross Domestic Product con-
verted to constant 2017 international dollars 
using Purchasing Power Parity (PPP) rates and 
divided to the total population1.

Figure 1 shows the change of this indicator 
for the selected time interval (2009–2019). 
France has the most stable economy; it exhib-
its constant GDP per capita growth during the 
whole period under study. The Italian econ-

1	  https://data.workdbank.org 
2	 CIA (2021). The World Factbook. https://www.cia.gov/the-world-factbook/

omy is more volatile; after 2010, there was a 
recession, and growth resumed only in 2015. 
The Italian economy is driven in large part by 
small and medium-sized enterprises, many of 
them family-owned. Italy also has a sizable 
underground economy, which is estimated as 
much as 17% of GDP2. Based on these data, 
we can expect that the FFP model for French 
firms will be more stable than for Italian ones 
as they operate in a more stable environment. 
Note that according to the World Bank classi-
fication, both countries belong to the group of 
developed countries.

The Russian Federation belongs to the group 
of developing countries or economies in tran-
sition. The Russian economy is characterized 
by the significant share of the government-con-
trolled sector and is largely regulated not by the 
market but by political decisions. A combina-
tion of falling oil prices, international sanc-
tions, and structural limitations pushed Russia 

Fig. 1. Changes of GDP per capita  
(constant 2017 international dollars using PPP)  

for selected countries. 
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into a deep recession in 2015, but GDP decline 
was reversed in 2017 as world oil demand 
picked up. All this leads to the highest growth 
of uncertainty. Under such conditions, it can be 
expected that the FFP model for Russian firms 
will change quite strongly at different stages.

We have collected the necessary data from the 
Bureau van Dijk Amadeus database3 using the 
following search strategy:

♦♦ Data for companies that operate in 2009–
2019. We excluded 2020 data to avoid the 
impact of external shocks related to the 
COVID-19 pandemic.

♦♦ The company belongs to a small and medium 
sized business (SMB) – the number of 
employees in the last available year is limited 
by values min = 10, max = 250.

♦♦ Good companies are companies which have 
Active status in the last available year

♦♦ Failed companies are companies that have one 
of the statuses: Active (default of payment), 
Active (insolvency proceedings), Bankruptcy, 
Dissolved (liquidation), and Dissolved.

For each country under consideration, we 
get five samples corresponding to year t – n, 

3	 Bureau van Dijk. Amadeus. https://amadeus.bvdinfo.com

n = 1, ..., 5 before observation in year t. Each 
observation has a class label that indicates the 
firm’s state at the end of the forecast period 
t : failure (Class = 1) or non-failure (Class = 
0). The number of observations (samples) for 
each time period is presented in Table 1; the 
number of failed firms is indicated in brack-
ets. As you can see, all datasets are unbal-
anced. The values of the imbalance (IB) ratio 
computed as the ratio of negative class obser-
vations to the number of failed companies are 
also given in Table 1.

2.1. Features selection

Since our goal is to build interpretable causal 
models, we must reduce the number of varia-
bles in the original dataset, leaving only those 
that provide the optimal balance of simplic-
ity and completeness. Therefore, we will fol-
low [1] approach, who used four variables that 
included the famous Altman’s Z’’-score model 
when analysing the bankruptcy process.

In a paper presenting the initial Z-score 
model, Altman [13] compiled a list of 22 poten-
tially important financial ratios, classified into 
five standard categories: liquidity, profitability, 

Table 1.
Dataset characteristics

t – 5 t – 4 t – 3 t – 2 t – 1

France
Samples 48024 (1509) 47163 (1503) 44151 (1439) 41798 (1382) 39720 (1313)

IB ratio 30.825 30.379 29.682 29.245 29.251

Italy
Samples 55895 (5223) 56036 (5349) 56170 (5522) 56115 (5535) 55728 (5498)

IB ratio 9.702 9.476 9.172 9.138 9.136

Russian Federation
Samples 44354 (1941) 43859 (2077) 43153 (2167) 43050 (2337) 42931 (2398)

IB ratio 21.851 20.117 18.914 17.421 16.903
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leverage, solvency, and activity. Only five finan-

cial ratios were included in the final discrimi-

nant function (Table 2). Note that higher values 

of all selected ratios correspond to a lower like-

lihood of bankruptcy.

Later, the author noted that the original 

model is applicable only to publicly traded 

companies since it includes the firm’s market 

value [40]. For this reason, in the new version 

of the model, he substituted the market value 

of equity by book value (Z’-score model). 

The next significant improvement was the 

exclusion of Sales / Total assets ratio because 

it is an industry-sensitive variable (Z’’-score 

model). 

Thus, we will use four ratios (WCTA, RETA, 
EBITTA, and BVETL) included in Altman’s 
Z’’-score. One of the BN modelling precon-
ditions is that there must be no latent vari-
ables (unobserved variables influencing the 
network’s variables) acting as confound-
ing factors. Based on the time-tested Altman 
model, we can confidently believe that this 
condition is met and there are no latent fac-
tors in the empirical data.

In [4], the authors tested the performance 
of the Z’’-score model using a huge interna-
tional dataset (more than 2.6 million observa-
tions of firms from 31 countries in the train-
ing sample). Overall, their results confirm that 
the model performs well despite its simplicity. 

Table 2.
Financial ratios in Altman’s Z-score model

Category Financial 
ratio Definition Comments

Liquidity WCTA
Working Capital /  
Total Assets

Working capital is defined as the difference between current 
assets and current liabilities, so this ratio is a measure of the net 
liquid assets of the firm relative to the total capitalisation [13]. 
The liquidity role is based on legal considerations, as the inability 
to pay the outstanding debt is a sufficient precondition for starting 
an official bankruptcy process [1].

Cumulative  
profitability

RETA
Retained Earnings /  
Total Assets

It is the measure of cumulative profitability over time which  
implicitly includes the age of a firm [13].

Annual  
profitability

EBITTA
Earnings before 
Interest and Taxes / 
Total Assets

It is a measure of the true productivity of the firm’s assets,  
abstracting from any tax or leverage factors[13].

Leverage BVETL

Book Value  
of Equity / Book 
Value of Total 
 Liabilities

In the initial Z-score model, the Market Value of Equity was used 
but this approach is applicable only to publicly traded companies 
(Altman et al., 2017). This ratio measures the firm’s ability to 
service liabilities using its own equity because additional debt,  
all other things being equal, increases bankruptcy likelihood [1].

Activity
STA  
(excluded)

Sales / Total Assets
Excluded from the revised Z’’-score model because it is an 
industry-sensitive variable [4].
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However, the authors made several important 
clarifications:

♦♦ the coefficients of the model must be reeval-
uated for each sample,

♦♦ the model based on logistic regression gives 
better results than the multiple discriminant 
analysis version.

Thus, we will use logistic regression as the basis 
for validating subsequent data transformations. 
Table 3 presents the ROC AUC scores obtained 
using the logistic regression (LR) 10-fold cross-
validation procedure for data that contains the 
above four Altman features (see the ‘Raw data’ 
line for each country). Note, the quality of pre-
diction decreases as the interval between obser-
vation and evaluation increases because the 
classification approach ignores changes in the 
firm over time [16].

2.2. Discretisation

Another problem stems from the fact that 
the concept of a non-linear Bayesian network 
was developed to handle discrete or categori-
cal data. There are three common approaches 
to extending the Bayesian network to contin-
uous variables [41]. The first is to model the 
conditional probability density of continuous 
variables using parametric distributions, and 
then to redesign the BN learning algorithms 
based on the parameterisations [42]. The sec-
ond approach is to use nonparametric distri-
butions, such as Gaussian processes [43]. The 
third approach is discretisation, that is a pro-
cess that transforms a variable, either discrete 
or continuous, into a finite number of intervals 
and associates with each interval a numerical, 
discrete value [44, 45].

Table 3.
ROC AUC scores (10-fold cross-validation)

Data Model
Datasets

t – 5 t – 4 t – 3 t – 2 t – 1

France

Raw data LR 0.675(0.034) 0.686(0.034) 0.694(0.026) 0.705(0.024) 0.714(0.028)

Discretized 
data

LR 0.687(0.030) 0.696(0.029) 0.712(0.022) 0.723(0.019) 0.729(0.027)

BN 0.686(0.028) 0.697(0.028) 0.712(0.016) 0.726(0.015) 0.727(0.032)

Italy

Raw data LR 0.695(0.039) 0.727(0.031) 0.744(0.026) 0.768(0.017) 0.802(0.012)

Discretized 
data

LR 0.716(0.027) 0.761(0.019) 0.777(0.015) 0.798(0.013) 0.826(0.009)

BN 0.717(0.028) 0.757(0.019) 0.776(0.013) 0.809(0.021) 0.833(0.015)

Russian Federation

Raw data LR 0.658(0.023) 0.675(0.021) 0.691(0.014) 0.711(0.014) 0.742(0.010)

Discretized 
data

LR 0.676(0.024) 0.683(0.018) 0.695(0.011) 0.731(0.021) 0.757(0.020)

BN 0.709(0.034) 0.740(0.038) 0.738(0.034) 0.743(0.030) 0.770(0.037)
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The discretisation approach in the context 
of Bayesian networks can be divided into two 
parts. First, there are algorithms that dis-
cretise attributes based on interdependen-
cies between class labels and attribute val-
ues, such as the entropy binning method 
[46]. These algorithms are based on classifi-
cation problems. They are used to discretise 
all continuous variables before learning the 
Bayesian network structure. The next class of 
algorithms requires that the structure of the 
network be known in advance [41, 45, 47]. 
These algorithms start with some prelimi-
nary discretisation policy, then the structure 
learning algorithm is started to determine the 
locally optimal graph structure. The discre-
tisation policy is then updated based on the 
learned network, and this cycle is repeated 
until convergence.

We carried out a series of experiments and 
found out that preliminary discretisation based 
on [46] allows us to learn networks with higher 
score. Table 3 shows the logistic regression 
ROC AUC scores obtained on discretised data, 
which confirm the chosen approach to discreti-
sation improves the performance of the model. 

For reference, Figs. 2 and 3 shows the distri-
bution of raw and discretised data respectively 
of the Italy t – 1 dataset. Note that the average 
values of the transformed ratios have changed 
because we now use the identification of inter-
vals into which each variable is divided instead 
of the absolute values. For BN, this transfor-
mation is acceptable because the model uses 
joint probabilities. The number of intervals 
according to [46] is determined based on the 
joint distribution of the attribute discretised 
and the target variable.
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3. Experiment and results

The process of construction of Bayesian net-
works from data  includes two stages: first, 
generation of the directed acyclic graph  rep-
resenting the optimal structure of BN (struc-
ture learning), and next, definition of condi-
tional probability tables  for each node in the 
graph (parameter learning). For our research, 
it is most important to study the structure of 
Bayesian networks corresponding to different 
periods before default. However, we performed 
both stages of learning, since CPT is important 
for the causal inference and, therefore, use of 
the model as a predictive tool.

Learning the structure of Bayesian networks 
can be complicated for two main reasons: (1) 
inferring causality and (2) the super-exponen-
tial number of directed edges that could exist in 
a dataset. Most methods for structure learning 

can be put into one of the following categories 
[24, 29]:

♦♦ score-based structure learning, with the goal 
to solve the optimisation problem

.

In other words, it is the task to find the best 
DAG according to some score function that 
measures its fitness to the data. Widely adopted 
scores are the Bayes Dirichlet equivalent uni-
form (BDeu), Bayesian Information Criterion 
(BIC), which approximates the BDeu, and 
Akaike Information Criterion (AIC).

♦♦ constraint-based structure learning family 
of algorithms that perform a series of statis-
tical tests to find independences among the 
variables and build the DAG following these 
constraints.

Fig. 3. Italy t – 1 dataset: distribution of discretised data.
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According to [24], a score-based approach 
evaluates the complete network structure 
against the null hypothesis of the empty net-
work. Thus, it takes a more global perspective, 
which allows us to trade off approximations in 
different part of the network. Therefore, we use 
score-based algorithms. 

To evaluate the structure, we use the BIC 
score. Let us have a set of random variables . 
Let S be a candidate Bayesian network structure 
and S be a vector of parameters for S. Then

,

where   is the estimation of S; 

d is the number of free parameters in S; 

N is the dataset size. 

The first term in the formula presents the log-
arithm of likelihood and the second one is the 
penalty for complexity. 

BIC has two important properties that allow 
it to be used as a universal metric. Firstly, BIC 

is an equivalence invariant, i.e., it gives the 
same score to equivalent models. As the num-
ber of variables grows, the number of possible 
network structures also grows. This property of 
the BIC guarantees the assignment of the same 
score to equivalent networks. Secondly, BIC is 
locally consistent when the sample size is suffi-
ciently large.

There are many different software packages 
and methods that they implement (e.g., see 
review in [29]). We use the pomegranate, that 
is an open-source Python library [48] imple-
menting few score-based methods, in particu-
lar an exact algorithm A*[49], its greedy imple-
mentation and Chow-Liu [50] algorithm.

On the first step, we tested all the algorithms 
in the package to find the ones that give the best 
results on our data. According to the tests, the 
exact algorithm achieves the best performance. 
Table 4 presents values obtained of BIC for the 
Bayesian Network. We also tested the Naive 
Bayes (NB) approach to ensure that the proba-

Table 4.
Bayesian Information Criterion (BIC) for the Bayesian Network (BN)  

and the Naive Bayes (NB) model

t – 5 t – 4 t – 3 t – 2 t – 1

France

NB –201 163 –192 127 –180 853 –178 759 –159 080

BN –171 651 –162 705 –152 862 –147 833 –129 372

Italy

NB –360 293 –375 556 –380 321 –391 209 –394 780

BN –316 636 –332 979 –324 984 –326 920 –329 246

Russian Federation

NB –199 197 –249 535 –235 613 –240 508 –247 257

BN –167 615 –214 696 –204 133 –206 716 –211 850
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bilistic relationships between variables are ben-
eficial. NB is the simplest form of the Bayes-
ian network, derived from the assumption of 
mutual independence of exogenous variables. 
The results presented in Table 4 confirm that 
the Naive Bayes method is inferior in accuracy 
to Bayesian networks. The corresponding BIC 
values are about 20% worse than those obtained 
for BN.

We also tested the performance of a classi-
fier built based on this Bayesian network [36]. 
Given that the data is unbalanced, we used the 
decision threshold adjustment by introducing 
various penalties for misclassification errors 
[51]. So, for observation x, the predicted class 
label  if and only if (x)  t. Here the (x) 
is an inference of BN when all variables except 
Class are known. Threshold t is computed as

,

where C
ij
 is a cost of predicting the class i when 

the true class is j. We set C
10

 = 1 and C
01

 = IB, 
where IB is the imbalance ratio of the training 
dataset.

Table 3 presents the ROC AUC scores 
obtained by 10-fold cross-validation; refer to 
the lines ‘Discretised dataset / BN’. As we can 
see, the performance of the BN classifier at 
least comparable with the Logistic Regression 
for all datasets and outperforms it in most cases 
especially for uncertain economies (Russia and 
Italy).

4. Discussion

The network structures shown in Figs. 4–6 
allow us to draw some important conclusions 
about the features of different stages of the firm 
failure process. The Class variable that labels 
the firm state (0 for healthy firms and 1 for fail 
companies) is on the root of graphs. This can 
be easily interpreted as follows. The state of the 
firm is the root cause that determines the val-
ues of its financial ratios. This view is consist-

ent with the problem of failure prediction when 
the state of the firm is computed by the values 
of financial ratios.

As follows from Figs. 4–5, for developed 
economies (Italy, France), the early stages of a 
long-term process (t – 5, t – 4) coincide. For 
the period t  –  5, the cumulative profitability 
positively affects the difference between assets 
and liabilities, i.e., leverage (note, the numer-
ator BVETL is the difference between Total 
Assets and Total Liabilities).  Both factors then 
determine the firm’s current liquidity and cur-
rent profitability. Note that liquidity and annual 
profitability are independent. However, at stage 
t  –  4, annual profitability becomes a factor 
affecting liquidity. 

For a more predictable economy (France), 
the model will not change during the t – 4, t – 3 
and t – 2 periods. One year before the finan-
cial failure, the network structure for France 
changes and becomes like the t  –  5 period. 
Overall, we can conclude that cumulative prof-
itability is a key factor in the success of French 
firms.

The model representing the short-term fail-
ure process of Italian firms (t  –  2 and t  –  1) 
is changing more radically. The key factor is 
the difference between assets and liabilities 
(leverage), which determines the firm’s abil-
ity to generate profits and liquidity. Note also 
that the liquidity values ​are conditionally inde-
pendent of the cumulative and annual profit-
ability at these stages. Obviously, this is due to 
the higher uncertainty in the Italian economy. 
Firms unable to meet liabilities using their own 
assets cannot quickly remedy this situation 
by increasing productivity through borrowed 
resources.

For Russian companies, the key factors are 
leverage and cumulative profitability. Also note 
that in this case, the liquidity depends on all 
the variables under consideration (except the 
period t  –  2). In general, the process can be 
described as follows. In the mid and long term 
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Fig. 4. France: Bayesian networks for different periods before default.

Fig. 5. Italy: Bayesian networks for different periods before default.

Fig 6. Russian Federation: Bayesian networks for different periods before default.
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(t  –  3 and t  –  4) cumulative profitability has 
a marginally positive effect on annual profit-
ability. This can be explained by the fact that 
the RETA ratio implicitly reflects the firm’s 
age [13] and its ability to generate profits sus-
tainably. The accumulated profit also causes 
the number of external resources attracted. At 
the same time, annual profitability and lever-
age are conditionally independent; however, 
they completely determine liquidity. The con-
ditional independence of the annual profitabil-
ity and the volume of attracted resources can 
be explained by the fact that we are considering 
a fairly long process at these stages, the results 
of which will be evaluated in 3–4 years. Obvi-
ously, this process is more influenced by man-
agerial decisions based on financial indicators 
that reflect long-term trends (cumulative prof-
itability) than short-term results (annual prof-
itability).

In stage t – 2, leverage becomes a key factor. 
This means that the ability to attract resources 
allows underperforming firms to increase prof-
itability and increase liquidity and avoid finan-
cial disruptions in 2 years. In the year t  –  1, 
cumulative profitability becomes a causal factor 
determining the leverage. This can be explained 
by the fact that potential lenders assess the 
firm’s overall performance in the long term, 
which can limit the availability of borrowed 
resources. Annual profitability is caused by the 
ability to generate profit in the long term and 
service the debt. Leverage and annual profit-
ability determine the current value of liquid-
ity, which at this stage is the main indicator of 
potential financial failures.

The main conclusion drawn from the pre-
sented results is that the mutual influence 
of the factors that determine the state of the 
firm changes over time (RQ1). In general, for 
firms at the beginning of a lengthy process 
that could lead to failure, cumulative profita-
bility is the key that determines other metrics 
such as liquidity and leverage. Then, as the pro-
cess develops, in the medium term, the degree 

of self-sufficiency, as measured by leverage, 
come to the fore, especially for economies with 
higher uncertainty. In these stages, low values 
of these factors limit the opportunities for mak-
ing a profit. This leads to further development 
of the failure. 

However, there are national specifics that 
are caused, firstly, by the level of economic 
development (RQ2) and, secondly, economic 
policy uncertainty (RQ3). This specificity is 
manifested both in the change in the causal 
relationships between factors at different stages 
of the firm failure process and in the rate of 
change of models. The most robust set of mod-
els is obtained for France, which has the lowest 
uncertainty. For Russia, which is characterized 
by the maximum growth of economic uncer-
tainty over the past 10 years, the models change 
most frequently and more radically.

Thus, the resulting graphs shed light on the 
specifics of the various stages of the failure pro-
cess. As far as we know, our paper is the first 
attempt to analyze FFP based on Bayesian 
networks. However, our research in its cur-
rent form has some issues that can be possibly 
viewed as limitations. In particular, we can note 
the following:

♦♦ The sample used contains cross-sectional 
data for different time periods before fail-
ure. It allows us to identify differences in 
causal relationships at stages of FFP; but it is 
impossible to trace the evolution of specific 
firms. To solve such a problem, panel data is 
needed. Analysis of data containing sequen-
tial periods for good and failed firms can pro-
vide more detailed information on the cau-
sality of a firm’s decline. However, solving 
this problem requires another tool, which 
can be a Dynamic Bayesian Network.

♦♦ The analysed factors are limited to only four 
financial ratios presented in the Altman Z’’-
score. We accepted this limitation based on 
the requirements for simplicity of the model 
and its further interpretation. This made 
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it possible to draw important conclusions 
about the internal dynamics of a firm. How-
ever, in further research, the financial ratios 
list can be extended to get more complex and 
detailed models. It is also necessary to study 
the influence of other parameters, for exam-
ple, corporate governance and environmen-
tal factors.

The next issue, which is of practical interest, 
is the definition of the current stage of the ana-
lysed firm’s process. This information can be 
useful for predictive model which will compute 
the probability of default for a few future peri-
ods. This issue is also a topic of future research.

Conclusion

Our work’s main goal was to demonstrate that 
Bayesian networks can serve as a reliable tool 
for analysing the dynamics of firms and stud-
ying the firm failure process. Our results, on 
the one hand, highlight the specifics of stages 
of the failure process for different economies. 
On the other hand, they allow us to build pre-
dictive models that surpass Altman’s Z’’-score 

using the same variables. As far as we know, 
the work presented is the first one using Bayes-
ian networks for FFP analysis, so many issues 
remained outside our study’s scope. Possible 
areas of research include:

♦♦ Building models on panel data describing the 
dynamics of a set of firms.

♦♦ Expansion of the number of analysed fea-
tures.

♦♦ Modelling specifics of industries.

♦♦ Determining the stage of the process to pre-
dict failure in the long term.

All this opens a vast field for new studies, 
which, in the light of the results obtained, seem 
promising, since they can potentially make a 
significant contribution to the theoretical and 
empirical analysis of the firm failure process. 

Acknowledgments

The work is a part of the project “Develop-
ment of Quantitative Methods for Bankruptcy 
Prediction” supported by the Graduate School 
of Business of the HSE University.

References

1.	 Lukason O., Laitinen E.K. (2019) Firm failure processes and components of failure risk:  
An analysis of European bankrupt firms. Journal of Business Research, vol. 98, pp. 380–390.  
https://doi.org/10.1016/j.jbusres.2018.06.025 

2.	 Altman E.I., Iwanicz-Drozdowska M., Laitinen E., Suvas A. (2020) A Race for Long Horizon  
Bankruptcy Prediction. Applied Economics, vol. 52, no. 37, pp. 4092–4111.  
https://doi.org/10.1080/00036846.2020.1730762

3.	 du Jardin P. (2021) Forecasting corporate failure using ensemble of self-organizing neural  
networks. European Journal of Operational Research, vol. 288, no. 3, pp. 869–886.  
https://doi.org/10.1016/j.ejor.2020.06.020

4.	 Altman E.I., Iwanicz-Drozdowska M., Laitinen E.K., Suvas A. (2017) Financial distress prediction 
 in an international context: A review and empirical analysis of Altman’s Z-Score model.  
Journal of International Financial Management & Accounting, vol. 28, no. 2, pp. 131–171.  
https://doi.org/10.1111/jifm.12053

5.	 Zelenkov Y., Fedorova E., Chekrizov D. (2017) Two-step classification method based on genetic 
algorithm for bankruptcy forecasting. Expert Systems with Applications, vol. 88, pp. 393–401.  
https://doi.org/10.1016/j.eswa.2017.07.025



BUSINESS INFORMATICS   Vol. 16  No. 1 – 2022

39

6.	 du Jardin P. (2017) Dynamics of firm financial evolution and bankruptcy prediction. Expert Systems 
with Applications, vol. 75, pp. 25–43. https://doi.org/10.1016/j.eswa.2017.01.016

7.	 D’Aveni R. (1989) The aftermath of organizational decline: A longitudinal study of the strategic and 
managerial characteristics of declining firms. Academy of Management Journal, vol. 32, no. 3,  
pp. 577–605. https://doi.org/10.5465/256435

8.	 Ooghe H., De Prijcker S. (2008) Failure processes and causes of company bankruptcy: A typology. 
Management Decision, vol. 46, no. 2, pp. 223–242. https://doi.org/10.1108/00251740810854131

9.	 du Jardin P., Séverin E. (2012) Forecasting financial failure using a Kohonen map: A comparative 
study to improve model stability over time. European Journal of Operational Research, vol. 221, no. 2, 
pp. 378–396. https://doi.org/10.1016/j.ejor.2012.04.006

10.	Argenti J. (1976) Corporate collapse: The causes and symptoms. New York, NY: McGraw-Hill.

11.	 du Jardin P. (2015) Bankruptcy prediction using terminal failure processes. European Journal of 
Operational Research, vol. 242, no. 1, pp. 276–303. https://doi.org/10.1016/j.ejor.2014.09.059

12.	 Bellovary J.L., Giacomino D.E., Akers M.D. (2007). A review of bankruptcy prediction studies:  
1930 to present. Journal of Financial Education, vol. 33, pp. 1–42.

13.	 Altman E.I. (1968) Financial Ratios, Discriminant Analysis and the Prediction of Corporate  
Bankruptcy. Journal of Finance, vol. 23, pp. 589–609.

14.	Barboza F., Kimura H., Altman E. (2017) Machine learning models and bankruptcy prediction.  
Expert Systems with Applications, vol. 83, pp. 405–417.  https://doi.org/10.1016/j.eswa.2017.04.006

15.	 Zelenkov Y., Volodarskiy N. (2021) Bankruptcy prediction on the base of the unbalanced data using 
multi-objective selection of classifiers. Expert Systems with Applications, vol. 185, article ID 115559. 
https://doi.org/10.1016/j.eswa.2021.115559

16.	Balcaen S., Ooghe H. (2006) 35 Years of Studies on Business Failure: An Overview of the Classic 
Statistical Methodologies and Their Related Problems. The British Accounting Review, vol. 38,  
pp. 63–93. https://doi.org/10.1016/j.bar.2005.09.001

17.	 Bardos M. (2007) What is at stake in the construction and use of credit scores? Computational  
Economics, vol. 29, no. 2, pp. 159–172. https://doi.org/10.1007/s10614-006-9083-x

18.	 Iwanicz-Drozdowska M., Laitinen E.K., Suvas A., Altman E.I.  (2016) Financial and Nonfinancial 
Variables as Long-horizon Predictors of Bankruptcy. Journal of Credit Risk, vol. 12, no. 4, pp. 49–78. 
https://doi.org/10.21314/JCR.2016.216

19.	Pizzi S., Caputo F., Venturelli A. (2020) Does it pay to be an honest entrepreneur? Addressing the 
relationship between sustainable development and bankruptcy risk. Corporate Social Responsibility and 
Environmental Management, vol. 27, no. 3, pp. 1478–1486. https://doi.org/10.1002/csr.1901 

20.	Zelenkov Y. (2020) Bankruptcy Prediction Using Survival Analysis Technique. In: 2020 IEEE 22nd 
Conference on Business Informatics (CBI), vol. 2, pp. 141–149. IEEE. https://doi.org/10.1109/
CBI49978.2020.10071

21.	 Cottrell M. (2003) Some other applications of the SOM algorithm: how to use the Kohonen algorithm 
for forecasting. In: Invited lecture at the 7th International Work-Conference on Artificial Neural Networks 
IWANN 2003.

22.	Serrano-Cinca C. (1998) Let financial data speak for themselves. In: Deboeck, G., Kohonen, T. (eds.) 
Visual Explorations in Finance with Self-Organizing Maps. Springer, pp. 3–23.

23.	Bunge M. (2017) Causality and modern science: Fourth revised edition. Routledge, NY.

24.	Koller D., Friedman N. (2009) Probabilistic graphical models: Principles and techniques. MIT Press, 
Cambridge: MA.



BUSINESS INFORMATICS   Vol. 16  No. 1 – 2022

40

25.	Pearl J. (2009) Causality. Cambridge University Press.

26.	Zhao Q., Hastie T. (2021) Causal Interpretations of Black-Box Models. Journal of Business & Economic 
Statistics, vol. 39, no. 1, pp. 272–281. https://doi.org/10.1080/07350015.2019.1624293

27.	 Spirtes P. (2010) Introduction to causal inference. Journal of Machine Learning Research, vol. 11,  
pp. 1643–1662.

28.	Hair J.F., Hult G.T.M., Ringle C.M., Sarstedt M., Thiele K.O. (2017) Mirror, mirror on the wall: 
a comparative evaluation of composite-based structural equation modelling methods. Journal of the 
Academy of Marketing Science, vol. 45, no. 5, pp. 616–632. https://doi.org/10.1007/s11747-017-0517-x

29.	Scanagatta M., Salmeron A., Stella F. (2019) A survey on Bayesian network structure learning 
from data. Progress in Artificial Intelligence, vol. 8, pp. 425–439. 
https://doi.org/10.1007/s13748-019-00194-y

30.	Sucar L.E. (2021) Probabilistic graphical models: Principles and applications. Springer Nature. Cham, 
Switzerland.

31.	 Ekici A., Ekici S.O. (2021) Understanding and managing complexity through Bayesian network 
approach: The case of bribery in business transactions. Journal of Business Research, vol. 129,  
pp. 757–773. https://doi.org/10.1016/j.jbusres.2019.10.024

32.	Marcot B.G., Penman T.D. (2019) Advances in Bayesian network modelling: Integration  
of modelling technologies. Environmental Modelling & Software, vol. 111, pp. 386–393.  
https://doi.org/10.1016/j.envsoft.2018.09.016

33.	McLachlan S., Dube K., Hitman G.A., Fenton N.E., Kyrimi E. (2020) Bayesian networks in  
healthcare: Distribution by medical condition. Artificial Intelligence in Medicine, vol. 107, article  
ID 101912. https://doi.org/10.1016/j.artmed.2020.101912

34.	Cai B., Huang L., Xie M. (2017) Bayesian networks in fault diagnosis. IEEE Transactions on Industrial 
Informatics, vol. 13, no. 5, pp. 2227–2240. https://doi.org/10.1109/TII.2017.2695583

35.	Pourret O., Naïm P., Marcot B. (2008) Bayesian Networks: A Practical Guide to Applications. Wiley, 
Hoboken.

36.	Bielza C., Larranaga P. (2014) Discrete Bayesian network classifiers: A survey. ACM Computing 
Surveys, vol. 47, no. 1, article ID 5. https://doi.org/10.1145/2576868

37.	 Yuan C., Lim H., Lu T.C. (2011) Most relevant explanation in Bayesian networks. Journal of Artificial 
Intelligence Research, vol. 42, pp. 309–352. https://doi.org/10.1613/jair.3301

38.	Lacave C., Díez F.J. (2002) A review of explanation methods for Bayesian networks. The Knowledge 
Engineering Review, vol. 17, no. 2, pp. 107-127.

39.	Lacave C., Luque M., Diez F. (2007) Explanation of Bayesian networks and influence diagrams 
in Elvira. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 4, 
952–965. https://doi.org/10.1109/TSMCB.2007.896018

40.	Altman E.I. (1983) Corporate Financial Distress: A Complete Guide to Predicting, Avoiding, and Dealing 
with Bankruptcy. Hoboken: Wiley.

41.	 Chen Y.C., Wheeler T.A., Kochenderfer M.J. (2017) Learning discrete Bayesian networks from  
continuous data. Journal of Artificial Intelligence Research, vol. 59, pp. 103–132.  
https://doi.org/10.1613/jair.5371

42.	Weiss Y., Freeman W.T. (2001) Correctness of belief propagation in Gaussian graphical models  
of arbitrary topology. Neural Computation, vol. 13, no. 10, pp. 2173–2200.  
https://doi.org/10.1162/089976601750541769



BUSINESS INFORMATICS   Vol. 16  No. 1 – 2022

41

43.	Ickstadt K., Bornkamp B., Grzegorczyk M., Wieczorek J., Sheriff M.R., Grecco H.E., Zamir E. 
(2010) Nonparametric Bayesian network. Bayesian Statistics, vol. 9, pp. 283–316.

44.	Kurgan L.A., Cios K.J. (2004) CAIM discretization algorithm. IEEE transactions on Knowledge and 
Data Engineering, vol. 16, no. 2, pp. 145–153. https://doi.org/10.1109/TKDE.2004.1269594

45.	Lustgarten J.L., Visweswaran S., Gopalakrishnan V., Cooper G.F. (2011) Application of an efficient 
Bayesian discretization method to biomedical data. BMC bioinformatics, vol. 12, no. 1, pp. 1–15.

46.	Fayyad U.M., Irani K.B. (1993) Multi-Interval Discretization of Continuous-Valued Attributes for 
Classification Learning, In: Proceedings of 13th International Joint Conference on Artificial Intelligence 
(IJCAI’93), pp. 1022–1027.

47.	 Friedman N., Goldszmidt M. (1996) Discretization of continuous attributes while learning Bayesian 
networks. In: Proceedings of 13-th International Conference on Machine Learning (ICML), pp. 157–165.

48.	Schreiber J. (2018) Pomegranate: fast and flexible probabilistic modeling in python. Journal of Machine 
Learning Research, vol. 18, no. 164, pp. 1–6.

49.	Yuan C., Malone B., Wu X. (2011) Learning optimal Bayesian networks using A* search. In: 22nd 
International Joint Conference on Artificial Intelligence (IJCAI), pp. 2186–2191.

50.	Chow C.K., Liu C.N. (1968) Approximating discrete probability distributions with dependence trees. 
IEEE Transactions on Information Theory, vol. 14, no. 3, pp. 462–467.

51.	 Elkan C. (2001) The foundations of cost-sensitive learning. In Proceedings of International Joint 
Conference on Artificial Intelligence (IJCAI’01), pp. 973–978.

About the author

Yury A. Zelenkov

Dr. Sci. (Tech.);

Professor, Department of Business Informatics, Graduate School of Business, National Research 
University Higher School of Economics, 20, Myasnitskaya Street, Moscow 101000, Russia; 

E-mail: yzelenkov@hse.ru

ORCID: 0000-0002-2248-1023


