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Measuring mathematical literacy is not easy as this construct is multicomponent 
and tasks often involve a lot of reading. Generally, intended users of test results 
want information about the overall level of respondents’ mathematical literacy as 
well as its specific components. According to educational and psychological test-
ing standards, reporting overall scores together with subscores simultaneously 
requires additional psychometric research to provide evidence for validity of all 
scores reported. A study performed shows that PROGRESS-ML, a test measuring 
basic mathematical literacy in elementary school pupils, can be used as a one-di-
mensional measure, allowing overall test scores to be reported. Meanwhile, read-
ing skills do not contribute significantly to the probability of item responses, and 
subscores can be reported independently as complementary to the total score.

basic mathematical literacy, complex construct, composite measure, PROGRESS-ML.
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Modern education and, broader, social sciences witness a growing 
demand for composite measures, i. e. instruments consisting of sub-
scales that contribute in a particular manner (as a sum or a weighted 
sum of subscores) to the overall score on the test. Such instruments 
are indispensable to measure composite constructs, e. g. the so-called 
21st-century skills or new literacies. These constructs comprise differ-
ent components and are difficult to treat as a classical unidimension-
al (single-component) persons’ characteristic. At the same time, prac-
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titioners and policymakers who base their decisions on the results of 
measurement value the information about the overall level of perfor-
mance as well as its individual components. This enriched informa-
tion is valuable for improvement of the education system as a whole.

In terms of psychometrics, composite measures are multidimen-
sional instruments that serve to evaluate the overall level of exami-
nees’ literacy as well as its individual components.

The Standards for Educational and Psychological Testing [Ameri-
can Educational Research Association, American Psychological Asso-
ciation, National Council on Measurement in Education 2014] state 
that (i) scores should not be reported for individuals unless their va-
lidity, comparability, and reliability have been established, and (ii) if a 
test provides more than one score, the psychometric quality of all the 
subscores should be established. These quality standards are impor-
tant because just as inaccurate information at the total test score lev-
el may lead to decisions with damaging consequences, inaccurate in-
formation at the subscore level can also lead to incorrect remediation 
decisions [Sinharay, Puhan, Haberman 2011]. In academia, the use of 
low-quality subscores may result in misleading conclusions about the 
nature of the phenomenon analyzed.

Basic mathematical literacy is one example of composite con-
structs. There have been numerous attempts to define basic litera-
cies with regard to most diverse aspects of the construct, from con-
tent area to their necessity for a life in a modern world [Froumin et 
al. 2018]. What all these definitions have in common is that they de-
fine literacy as the ability to solve daily life problems. Due to diversity 
of such problems, instruments measuring basic literacies place task 
models into widely heterogeneous contexts in an effort to measure ef-
fectiveness of solving specific types of problems. That is how such in-
struments (measuring basic mathematical literacy) become composite: 
they represent a certain integrated measure of an examinee’s ability 
to solve various problems involving math operations. A number of re-
searchers believe that such a structure of composite measures leads 
to nuisance skills “interfering” with problem solving (see, for exam-
ple, [Grimm 2008]). As a consequence, one of the key psychometric 
issues with such measures is the demand for valid and psychometri-
cally sound total score on the test as well as subscores on its individ-
ual components.

The present study seeks to test and substantiate different ap-
proaches to modelling data of the PROGRESS-ML test designed to 
measure basic mathematical literacy in elementary school. The arti-
cle is structured as follows. First, an overview of theoretical challeng-
es in measuring basic mathematical literacy is given. Next, the theo-
retical framework and structure of PROGRESS-ML are described. As 
long as the focus of this article is on psychometric modelling, it does 
not investigate deep into different ways of interpreting the theoreti-
cal framework of the test, its design peculiarities, or the relationship 
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between test content and elementary school curriculum — without be-
littling the significance of such work. Further on, the existing psycho-
metric approaches to composite measurement models are described, 
and a rationale for choosing one of them is provided. After that, em-
pirical data collected with PROGRESS-ML is analyzed. At the first stage 
of this analysis, the reportability of the total score on the basic mathe-
matical literacy test is evaluated. The second stage tests the hypothe-
sis that reading skills make an important contribution to performance 
on the basic mathematical literacy test. Finally, the third stage evalu-
ates the reportability of subscores gained in specific content areas and 
measuring specific types of cognitive processes. The final section of 
this article provides a psychometric interpretation of the results ob-
tained and describes their contribution to educational and psycholog-
ical measurement methodologies.

Mathematical literacy is a competency that everyone needs to han-
dle everyday situations, such as grocery shopping, cooking, bill pay-
ment, etc. In Russia, mathematics has been traditionally regarded as 
a school subject that is critically involved in other academic disciplines 
and as a unique tool for promoting “cognitive development in main-
stream schools” [Kozlov, Kondakov 2009]. However, measuring the 
mathematical literacy of students is difficult due to challenges in de-
fining the construct.

Researchers and practitioners around the world have not yet come 
up with any consensual concept of mathematical literacy that could 
be defined by a certain set of knowledge and skills [ Jablonka 2003]. 
Mathematical literacy includes computational skills, knowledge and un-
derstanding of fundamental mathematical concepts, spatial thinking, 
real-world problem solving skills, ability to implement complex prob-
lem-solving algorithms and to analyze data from graphs. Even tests 
measuring mathematical literacy in preschool-age children are de-
signed using divergent sets of basic knowledge and skills from an im-
pressive list, which includes mental calculation, numerical knowledge, 
number sense, object counting, shape recognition, measuring, etc.

Challenges in defining and, consequently, measuring mathemati-
cal literacy of school students come, in particular, from the dependence 
of mathematics as a school subject on the specific school curriculum 
which is designed in accordance with the formal goals of mathematics 
education. For example, a number of curricula focus on the systemic 
role of quality mathematics education for scientific progress (e. g. the 
2013 Concept of Mathematical Education in the Russian Federation1). 
Another approach, supported by some of the existing international 

 1 Concept of Mathematical Education in the Russian Federation. Ministry of Edu-
cation and Science of the Russian Federation: http://www.math.ru/conc/vers/
conc-3003.pdf
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surveys of education quality such as PISA2 [OECD2019], makes it a pri-
ority that by the time school students complete the obligatory stage 
of education, they should possess the skills of handling various every-
day situations, from grocery shopping to arranging furniture at home.

The only consensus achieved so far among researchers is on the 
development trajectories of particular mathematical skills in preschool 
and school [Purpura, Baroody, Lonigan 2013]. It is still unclear, for in-
stance, when and how young children develop the ability to under-
stand and process symbolic numerical representations (digits and 
numbers) [Benoit et al. 2013; Kolkman, Kroesbergen, Leseman 2013], to 
what extent the development of mathematical skills depends on oth-
er cognitive abilities [Peng et al. 2016; Toll et al. 2015], or which ear-
ly competencies are the best predictors of formal math performance 
[Chen, Li 2014; Libertus et al. 2016; Schneider et al. 2017]. As for school 
math instruction, skills acquired by students become more and more 
divergent with every subsequent grade due to differences in curricu-
la, which makes it virtually impossible to identify a single construct to 
describe mathematical literacy.

Another challenge in defining mathematical literacy is that this 
construct demonstrates not only what knowledge students possess 
but also in which situations they can apply it. Different content areas 
are assessed using tasks designed to induce different levels of cogni-
tive load. For example, a problem in which students are asked to esti-
mate the height of a column in a histogram requires less cognitive ef-
fort than the one in which students have to process information from 
a graph which they see for the first time. For this reason, a number of 
assessments also measure mathematical literacy through the prism 
of the cognitive processes involved in problem solving. For instance, 
PISA measures the level of 15-year-old students’ theoretical knowl-
edge in specific content domains (quantity, space and shape, etc.) and 
their ability to apply this knowledge at every stage of problem solv-
ing [OECD2013].

Finally, challenges in measuring mathematical literacy also arise 
from the fact that mathematical skills are closely associated with read-
ing literacy. In a longitudinal study conducted on a low-income sample 
of students from the Chicago Public Schools, third grade reading com-
prehension was found to be a positive significant predictor of gains 
in mathematics skills up to eighth grade controlling for prior mathe-
matics performance. The largest effects of reading achievement were 
shown for the problem solving and data interpretation [Grimm 2008]. 
Similar results were obtained in analyses comparing the mean scores 
of students across 22 countries that took part in two international as-
sessments conducted in 2003: PISA reading scores are highly corre-

 2 Program for International Students Assessment, administered every three years 
to measure mathematical, reading and scientific literacy of 15-year-old school 
students. 
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lated with performance in the TIMSS “Data” content domain,3 which 
measures the ability to read graphs and interpret diagrams (r = 0.91, 
the correlation coefficients with other content domains varied from 
0.57 to 0.79) [Wu 2010]. Math disabilities (dyscalculia) often co-occurs 
with dyslexia4 [ Joyner, Wagner 2020], children with comorbid mathe-
matics and reading difficulties performing worse in mathematics than 
children with dyscalculia only [Jordan, Hanich, Kaplan 2003].

The relationship between mathematical and reading literacy is 
complex and still largely dubious. On the one hand, both constructs 
can involve the same cognitive processes: for instance, numerical cog-
nition was found to depend on language skills in early childhood [Gel-
man, Butterworth 2005]. Miscomprehension of the language of word 
problems can be another possible explanation of this relationship 
[Cummis et al. 1988]. According to Anne Newman’s hierarchy of error 
in written mathematical tasks [Newman 1977; Casey 1978], the first two 
stages in solving any word problem depend directly on the reading 
skills of decoding and comprehension, which imply reading the task 
carefully, understanding the context of the problem and the question 
asked, and collecting all the necessary information. Errors at these 
stages account for 12 to 22% of all solution errors (see, for example, a 
review of studies in [Clements, Ellerton 1996]). Therefore, obtaining the 
correct solution to any written mathematical task depends on whether 
the pupil makes errors during the first two steps in attempting to an-
swer it, e. g. by reading “minutes” instead of “minus” [Clements 1980].

As we can see, mathematical literacy is not a binary but complex 
and multifaceted construct that involves a broad array of mathemat-
ical skills. It would be difficult to evaluate the development of mathe-
matical skills — from informal knowledge in preschool to sophisticat-
ed methods in high school — on a single scale. Besides, mathematical 
skills involved in solving word problems and reading graphs largely 
depend on reading comprehension. The construct’s complexity and 
relationship with other intellectual skills make assessment of mathe-
matical literacy even more challenging and require advanced psycho-
metric models to validate the instruments.

The PROGRESS-ML Basic Mathematical Literacy Test is part of the 
PROGRESS instrument5 designed to measure basic literacies in ele-
mentary school pupils for the purposes of learning process support 
and improvement. PROGRESS measures basic literacies in mathemat-

 3 Trends in Mathematics and Science Study, administered every four years to 
measure mathematical and scientific literacy of fourth- and eighth-grade stu-
dents.

 4 A learning disorder that involves difficulty reading and writing.
 5 The instrument was designed by the Institute of Education (Higher School of 

Economics).
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ics, language, reading comprehension, and vocabulary. Measurements 
are performed as computerized adaptive testing.

PROGRESS-ML is designed to evaluate how well students perform 
in mathematics after two years of schooling. In today’s postindustrial 
world, mathematics education must prepare students to solve prob-
lems in ever-changing environments, e. g. make quick decisions and 
adapt to new situations, be able to solve unfamiliar problems and nav-
igate easily in large quantities of information. All of this transforms 
the concept of basic mathematical literacy. For instance, such literacy 
comes to involve a broader range of skills due to the increased number 
of data handling or problem solving contexts. The test was designed 
around the following definition: “Basic mathematical literacy (includ-
ing data handling) is the ability to apply mathematical knowledge, rea-
soning, and models to real-world problems, including those in digital 
environments” [Froumin et al. 2018].

Table 1. Content areas covered by the PROGRESS-ML test.

Content area
Number 
of items Description

Spatial 
concepts

7 The items measure pupils’ ability to understand spatial relation-
ships and mentally represent 2D and 3D objects. Children are re-
quired to not only recognize different geometric shapes but also 
visualize new geometric objects by combining 2D or 3D figures 
into one.

Measuring 6 Successful performance on this module demonstrates under-
standing that numbers can not only be used for specifying po-
sition in a sequence but also serve as attributes (length, surface 
area, etc.). The tasks evaluate children’s ability to manipulate 
numbers as measures.

Patterns and 
sequences

6 The items measure pupils’ ability to recognize and extend arith-
metic and geometric sequences as well as their level of algorith-
mic universal learning activities<FootnoteStart:>The part of the 
Russian Federal Educational Standard.<FootnoteEnd:>. To solve 
the tasks in this module correctly, pupils must understand how 
sequences work (one or more rules).

Modelling 6 This module measures the ability to translate models represent-
ed with words or geometric sequences into mathematical formu-
lations. As in the Patterns and Sequences module, these items 
also measure pupils’ level of algorithmic universal learning ac-
tivities. However, students are required here not only to recog-
nize the model but also to represent it using formal mathemati-
cal notation.

Data handling 5 The tasks evaluate children’s ability to comprehend and interpret 
information from charts and graphs. In addition, pupils must un-
derstand how to perform computations using graphic informa-
tion and make judgments with additional information.
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The test is comprised of 30 dichotomous multiple-choice items. 
Items were selected to meet the definition of basic mathematical lit-
eracy and at the same time make allowance for the elementary school 
curriculum. As a result, five content areas were identified (Table 1), and 
all the items were grouped into the respective modules.

Furthermore, PROGRESS-ML evaluates students’ cognitive pro-
cesses that are necessary to solve the tasks. The test was designed 
in accordance with the three cognitive domains identified within the 
theoretical framework of the TIMSS fourth-grade assessment [Harris, 
Martin 2013]: knowing, applying, and reasoning. At the same time, the 
test items were designed to fit the Rasch model.

The TIMSS taxonomy of cognitive domains is similar to Bloom’s tax-
onomy of educational objectives [Bloom 1956], yet it is not identical 
to it and identifies only three domains, not six. Besides, a fundamen-
tally distinctive feature of the TIMSS taxonomy is that the three cog-
nitive domains are not ranked by difficulty or degree of abstractness, 
so each domain has tasks of varying difficulty.

Problem solving in PROGRESS-ML involves all the three cognitive 
domains of the TIMSS taxonomy. Most of the tasks are distributed ap-
proximately equally between the domains of Knowing and Applying, 
while the remaining small portion of items targets Reasoning6 (Table 2).

Some of the PROGRESS-ML tasks (about 50%) can be regarded as 
reading-intensive, as students are supposed to read and understand 
the problem setting.

 6 The correctness of classifying the items under the three cognitive domains was 
verified by experts.

Table 2. Cognitive domains evaluated in the PROGRESS mathematics test

Cognitive 
domain

Number 
of items Description

Knowing 12 Covers the knowledge of mathematical facts, which is fundamen-
tal to solving any problem. For example, students may be asked 
to add or subtract two whole numbers, estimate the height of a 
column in a simple histogram, or calculate how many times a ge-
ometric shape can be fitted into a picture.

Applying 14 Focuses on the ability of students to apply the acquired knowl-
edge and skills to solve problems or situations with well-known 
contexts and solution algorithms. For example, a problem may 
ask for the rule behind a number sequence or a shape pattern.

Reasoning 4 The tasks require careful analysis of the information given in the 
problem in order to connect facts from different content areas 
and consider alternative solutions. These items use unfamiliar 
contexts and thus require more focus.

http://vo.hse.ru/en/
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Therefore, PROGRESS-ML is a structurally complex measure that 
covers five content areas and evaluates three cognitive domains. Such 
measures are called composite and imply reporting the total score on 
the test (in this case, basic mathematical literacy) as well as the sub-
scores (in this case, for content areas and/or cognitive domains).

Psychometric analysis of composite measures involves a few steps. 
First of all, it is necessary to examine whether the test is essentially 
unidimensional. If yes, then it is safe to report the total score on the 
test (given that it has been proven to be valid and psychometrically 
sound). If the test is not unidimensional, then multidimensional mod-
els should be used; in this case, the total score cannot be reported un-
til a secondary analysis with hierarchical models is conducted [Schmid, 
Leiman 1957]. Two types of hierarchical models are especially popular: 
bifactor models [Reise 2012] and higher-order models [Gignac 2008]. 
Although both types of models have some algebraic similarities and 
imply reporting the total score on the test, solutions of these models 
are interpreted in different ways [Rijmen 2010; Mansolf, Reise 2017]. 
Higher-order models measure the general factor which is manifested 
in subscores, while bifactor models separate the effects of the gener-
al factor from those of subscores.

If the test is designed to report subscores (e. g. scores in specif-
ic content areas or cognitive domains) in addition to the total score, 
three approaches to modelling are possible. The first one consists in 
applying a unidimensional model to each subscale individually [Davey, 
Hirsch 1991]. However, subscales do not normally contain many items, 
so this results in compromised reliability and unacceptably high meas-
urement error. Under such conditions, subscore reporting appears to 
be inappropriate [American Educational Research Association, Amer-
ican Psychological Association, National Council on Measurement in 
Education 2014].

The second approach is based on between-item non-compensato-
ry multidimensional item response models [Reckase 2009]. Such mod-
els bring together a few unidimensional models in a single likelihood 
equation. Each latent trait of a variable is estimated based on exam-
inees’ answers to specific items only, controlling for the correlations 
among the latent variables. Therefore, multidimensional models use 
the information from each dimension to model the probability of item 
responses not as a function of a single latent variable but as a function 
of a multidimensional latent distribution of respondents (they consid-
er correlations among latent dimensions). As a result, measurements 
will be more reliable than with the previous approach, adding more 
value to subscore reporting. Between-item non-compensatory multi-
dimensional item response models can be used in analysis of collater-
al information, i. e. any information about the test, examinees, or re-
lations between them which does not affect parameter interpretation 
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when added to the model but allows reducing uncertainty in parame-
ter evaluation [Wang, Chen, Cheng 2004].

The third approach uses bifactor models. Hypothetically, they al-
low reporting total scores together with subscores as supplementary 
and independent information. However, studies show that subscores 
obtained using bifactor models tend to lack reliability as they describe 
information which was not extracted using the total score and thus 
often capture random noise in the data [Haberman, Sinharay 2010].

To summarize, data from composite measures cannot be used 
without prior psychometric analysis to ensure reliability and reporta-
bility of the total score and subscores.

The study was conducted on a regionally representative sample of 
6,078 third-grade pupils from two regions of Russia. The average age 
of pupils was 9.06 (SD = 0.46); girls accounted for 52.36% of the sam-
ple. Computer adaptive testing with a stopping rule was administered 
to the sample.

Psychometric analysis was performed entirely within the framework of 
Item Response Theory (IRT) [van der Linden 2018]. IRT postulates that 
items as well as examinees have some latent parameters, the interac-
tions among which determine the probability of observing a correct re-
sponse of each examinee to each item. Specifically, analysis was done 
through Rasch measurement modelling [Rasch 1993], which posits that 
items only differ in their difficulty, compared to other IRT models that 
use more item parameters [Wright, Stone 1979]. The specific objectiv-
ity (that guarantees separation of the parameters of items and exam-
inees, a clear hierarchy of items along the entire continuum of ability, 
and numerical stability of models) justify the selection of Rasch mod-
els for psychometric analysis in the present study.

An important advantage of Rasch models is that they allow assess-
ing the variance of latent abilities (random effects) [Kamata 2001]. In 
case the variance of an ability approaches zero, this ability does not 
load on the items enough to affect the probability of item respons-
es. Besides, just as all multidimensional IRT models, Rasch models al-
low estimating directly the correlations and variances of latent abili-
ties “cleansed” of random error variance in the distribution of scores 
across the items [De Boeck, Wilson 2004].

Unidimensional and multidimensional models were used in the 
present study to test a series of hypotheses about possible latent abil-
ities required to solve the tasks.

The Rasch unidimensional measurement model [Wright, Stone 
1979] was used to test the hypothesis that the total score on the test 
can be safely reported to individuals. Test dimensionality was analyzed 
by applying principal component analysis (PCA) to standardized model 
residuals, which represent standardized deviations of responses from 
values expected under the employed model [Linacre 1998; Smith 2002]. 

3.1. Research 
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Analysis Methods

http://vo.hse.ru/en/


122 Voprosy obrazovaniya / Educational Studies Moscow. 2021. No 2

EDUCATION STATISTICS  AND SOCIOLOGY

Thereby, the variance unexplained by the model is decomposed into 
components. In theory, if the unidimensionality assumption is con-
firmed, correlations among the residuals should be close to zero. In 
this case, PCA will not extract components that systematically explain 
more variance than others. Hence, the distribution of the variance ex-
plained by the components will be close to uniform. It is also generally 
accepted that if the eigenvalue of the component explaining most of 
the variance is less than 2, the distribution of residuals captures ran-
dom noise and the test is thus unidimensional [Linacre 2021]. Other-
wise, the test has more than one dimension.

The item fit was assessed using unweighted (OutFit) and weight-
ed (InFit) mean square (MnSq) statistics [Linacre 2002]. These statistics 
are also based on standardized residuals [Wright, Masters 1990] and 
have an expected value of 1. The present study considers the accept-
able range of fit statistics to be (0.75; 1.33), which is treated in research 
literature as a range productive for measurements [Adams, Khoo 1996].

Finally, psychometric soundness of the total test score was as-
sessed by measuring its reliability and measurement error.

The hypothesis on the importance of reading skills in solving math-
ematical problems was tested using within-item compensatory mul-
tidimensional models [Adams, Wilson, Wang 1997]. Such models im-
ply that more than one latent ability is required to solve any task (e. g. 
mathematics and reading skills), and linear combinations of such la-
tent traits modulate the actual probability of item responses.

Fifteen most reading-intensive items were selected to assess read-
ing skills. Next, an incomplete bifactor Rasch model was calibrated, 
which allows that mathematical literacy is measured by all the items 
while a selected group of items additionally measures reading com-
prehension. This model can be regarded as an extended Rasch testlet 
model [Paek et al. 2009], an oblique bifactor IRT model that allows di-
rect estimation of correlations between two latent abilities. Therefore, 
the primary dimension that loads on all the items can be interpret-
ed as basic mathematical literacy “cleansed” from the contribution of 
reading. At the same time, the additional ability that loads on the se-
lected 15 tasks can be interpreted as reading skills that are manifest-
ed in the basic mathematical literacy test.

Finally, the subscore reporting hypothesis was tested using Rasch 
between-item non-compensatory multidimensional models [Adams, 
Wilson, Wang 1997], which imply that each item belongs to only one 
particular subscale and there is no general factor. The preference of 
a between-item model in the present study has to do with criticism 
against general factor models, in particular because the subscores ob-
tained in such models are difficult to interpret. For a bifactor model, 
this involves low subscore reliability and constraints imposed on the 
variance–covariance matrix of latent variables that make interpreta-
tion of any obtained scores challenging [Bonifay, Lane, Reise 2017]. At 
the same time, higher-order models do not use subscores at all be-
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cause the key information about the construct components is already 
described by the general factor.

Goodness of the global fit of all models described above was com-
pared to that of the Rasch unidimensional model, which served as the 
baseline. The global fit was assessed using the Akaike Information 
Criterion (AIC) [Akaike 1974]) and the Bayesian Information Criterion 
(BIC) [Schwarz 1978]. These information criteria include a penalty for 
extra-parameters (AIC) with respect to the sample size (BIC). They es-
timate the relative quality of models, the ones with the lowest values 
being preferred. Local fit was assessed using the OutFit and InFit sta-
tistics described above.

Reliability of all the models was assessed using expected a poste-
riori (EAP) estimation of ability [Bock, Mislevy 1982]. The EAP method 
works particularly well with multidimensional measures as it utilizes 
information about the multidimensional ability distribution as well as 
the entire patterns of item responses to measure ability along each 
dimension. The use of EAP in this case is justified because the instru-
ment is not designed for the analysis on particular dimensions sepa-
rately without using the other ones. Therefore, the use of multidimen-
sional IRT models in this context involves a different understanding 
of collateral information. In this case, for each subscale, data from all 
the other subscales (included in covariance matrix of the latent vari-
ables) represents collateral information [Wu, Tam, Jen 2016]. As a re-
sult, measurement reliability improves. The posterior standard devia-
tion can be treated as the standard error measurement. The ultimate 
reliability is determined by the ratio of this error variance to the esti-
mated latent ability variance [Adams 2005].

All the models applied can be regarded as special cases of the Mul-
tidimensional Random Coefficients Multinomial Logit Model [Adams, 
Wilson, Wang 1997]. All the models were estimated using a Quasi-Mon-
te Carlo algorithm in the TAM package (version 3.5–19) [Robitzsch, 
Kiefer, Wu 2020] for R (version 3.6.2) under the Marginal Maximum 
Likelihood estimator, which makes a parametric assumption about 
(multidimensional) normality of the ability distribution [Bock, Aitkin 
1981]. All the models were identified by keeping the sample mean at 
zero for each dimension. This is especially important when identifying 
within-item multidimensional models. Dimensionality was assessed 
using the ‘psych’ package (version 1.9.12.31) [Revelle 2020]. Residuals 
were evaluated using the parameter estimates obtained by Warm’s 
weighted maximum likelihood estimation [Warm 1989], which has 
proved to be less biased than other methods for ability point-estima-
tion that are popular in IRT.

Table 3 displays the results of testing the conformance of items to the 
unidimensional Rasch model. All the items show a reasonable fit with 
goodness-of-fit statistics staying within the acceptable range.

4. Results
4.1. Testing 

the Total Score 
Reporting 

Hypothesis
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Table 3. Testing the conformance of items to  
the unidimensional Rasch model.

Module Item
Number of 
responses Difficulty SE

InFit 
MnSq

OutFit 
MnSq

Spatial 
concepts

I01 6,041 –1.18 0.03 0.97 0.96

I02 5,975 –0.56 0.03 1.03 1.04

I03 5,997 –0.23 0.03 1.05 1.06

I04 5,430 0.37 0.03 1.04 1.06

I05 4,987 0.69 0.03 1.00 0.99

I06 4,125 1.19 0.04 1.08 1.14

I07 3,098 1.94 0.05 0.98 0.97

Measuring I08 5,843 –1.51 0.03 1.07 1.13

I09 5,860 –1.47 0.03 1.03 1.05

I10 5,811 –1.69 0.04 0.95 0.88

I11 5,626 –0.76 0.03 1.02 1.01

I12 5,375 –0.65 0.03 0.93 0.89

I13 5,080 –0.59 0.03 0.95 0.92

Patterns and 
sequences

I14 5,560 –2.41 0.05 0.95 0.87

I15 5,473 –2.06 0.04 1.02 1.04

I16 5,340 –1.42 0.04 0.96 0.92

I17 5,009 –1.16 0.03 1.00 1.03

I18 4,755 –0.56 0.03 1.06 1.07

I19 4,398 –0.12 0.03 1.03 1.04

Modelling I20 4,603 –0.62 0.03 0.98 0.98

I21 4,263 –0.41 0.03 0.89 0.86

I22 3,826 –0.37 0.04 1.10 1.14

I23 3,013 1.78 0.05 1.04 1.11

I24 2,423 0.72 0.05 1.06 1.12

I25 1,702 0.73 0.05 1.00 1.01

Data 
handling

I26 2,808 –2.31 0.06 0.98 0.98

I27 2,469 –2.20 0.06 0.93 0.83

I28 2,320 –1.35 0.05 0.89 0.83

I29 1,969 –1.60 0.06 0.88 0.76

I30 1,708 1.05 0.06 0.95 0.93
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PCA of model residuals reveals that the eigenvalue of the first com-
ponent is 1.45, which accounts for 4.2% of the residual variance. The 
eigenvalues of the following four components fall within the range of 
(1.15; 1.20), and the variance is distributed approximately uniformly 
among the principal components (about 4%). Consequently, the unidi-
mensional model describes the distribution of response probabilities 
adequately and the test can be treated as unidimensional.

The EAP reliability of the unidimensional model in measuring math-
ematical literacy equals 0.76 (ability variance = 0.93); Cronbach’s alpha 
is 0.81, which is fairly high.

Therefore, the test can be considered unidimensional based on the 
above analysis even despite different methods of item grouping, which 
means that the total score on the mathematical literacy test can be re-
ported as psychometrically stable.

The unidimensional Rasch model served as the baseline for com-
paring all the other models.

Table 4 shows the results of comparing the unidimensional Rasch mod-
el with the Rasch model calibrated for measuring the contribution of 
reading skills in the probability of item responses.

The model measuring the contribution of reading comprehen-
sion looks more preferable in terms of global fit. However, the vari-
ance of reading skills is only 0.02, which is 52.35 times lower than that 
of mathematical literacy (0.89) from this model. Similarly, the reliabili-
ty of mathematical literacy was found to be 0.75, which is 41.83 times 
higher than that of reading comprehension (0.01). Consequently, ex-
aminees do not differ in the latent ability measured by the selected 15 
items. Furthermore, Pearson’s correlation coefficient between the di-
mensions of reading skills and mathematical literacy is insignificantly 
different from zero (r = 0.01, p > 0.05, according to the t-test for Pear-
son’s correlation), contradicting previous findings (e. g. [Grimm 2008]). 
The reason may consist in low variance and, as a result, low reliability 
of reading skills measurement: with such reliability and variance val-
ues, differences in examinees’ reading skills are almost entirely attrib-
utable to random fluctuations. Based on the results of analysis, one 
may say that reading comprehension may contribute to scores in this 

4.2. Testing the 
Hypothesis about 

the Contribution of 
Reading Skills

Table 4. Comparing the baseline model with the model  
evaluating the contribution of reading comprehension.

Model
Log-likeli-
hood

Sample 
size

Number of  
parameters AIC BIC

Unidimensional 144,255.6
6,078

31 144,318 144,526

With reading comprehension as 
a latent dimension 142,638.5 33 142,705 142,926
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test just as in other instruments, but the contribution is so small that 
it is essentially unidentifiable.

Table 5 shows the results of comparing the unidimensional Rasch mod-
el with the Rasch models calibrated for validating the theory-based 
content areas and cognitive domains.

Data from Table 5 indicates that either of the two concurrent mod-
els fits data better than the unidimensional model. Consequently, the 
taxonomy behind test design actually guides the examinees towards 
expected behavior.

The results of analyzing the variance–covariance matrices and re-
liability coefficients for each dimension of the models applied are giv-
en in Tables 6 and 7.

The coefficients in Table 6 allow concluding that, firstly, reliabilities 
of all the dimensions are sufficiently high for using the test as a longi-
tudinal survey instrument. Despite the small number of items, the ba-
sic mathematical literacy test can be used for longitudinal assessments 
thanks to the reliability analysis method (EAP estimation of ability) ap-
plied under multidimensional model. Secondly, all the content areas 
correlate with one another at approximately the same level (0.8–0.9), 

4.3. Testing 
the Subscore 

Reporting 
Hypothesis

Table 5. Comparing the unidimensional Rasch model with  
the Rasch models for content areas and cognitive domains.

Model
Log-
likelihood

Sample  
size

Number of 
parameters AIC BIC

Unidimensional 144,255.6

6,078

31 144,318 144,526

Content areas 143,875.7 45 143,966 144,268

Cognitive domains 143,965.4 36 144,037 144,279

Table 6. Reliability, variance, and correlation coefficients  
for the content areas model.

Dimension  
(content area)

Spatial 
concepts Measuring

Patterns and 
sequences Modelling

Data  
handling

Spatial concepts 0.85 0.80 0.83 0.80

Measuring 0.85 0.90 0.83

Patterns and sequences 0.86 0.84

Modelling 0.83

Variance 0.89 1.23 1.12 1.06 2.95

Reliability 0.68 0.71 0.67 0.68 0.63

Number of items 7 6 6 6 5
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adding to the argument for unidimensionality even though the mul-
tidimensional model fits the data statistically better. These results in-
dicate that items from every content area load equally on the general 
factor of mathematical literacy.

A similar inference can be made about the model assessing the 
validity of cognitive domains (Table 7): reliabilities of the dimensions 
are sufficiently high for using the test as a longitudinal survey instru-
ment. It is worth focusing on the reasoning dimension which consists 
of four dichotomous items only. Such a small number of items basical-
ly makes raw subscores on this scale unreportable, unlike the scores 
on this latent dimension. Analysis of the correlation matrix of cogni-
tive domains also supports the hypothesis about the test being essen-
tially unidimensional.

Social sciences have been using increasingly more often composite 
measures, which imply reporting the total score as well as subscores. 
One of the possible strategies of applying the measurement results 
obtained with such instruments could consist in reporting raw sub-
scores [Wilson, Gochyyev 2020]. However, psychometric analysis is 
required to find out how much value raw subscores add to the total 
score [Haberman 2005]. In most cases, raw subscores are not psycho-
metrically sound, in particular due to their low reliability [Haberman, 
Sinharay 2010].

Another, more popular strategy suggests using complex psycho-
metric models that are often difficult to interpret [Bonifay, Lane, Re-
ise 2017]. This primarily applies to bifactor models: the estimation of 
their parameters requires essential, sometimes unrealistic assump-
tions that make it extremely hard to interpret the test results [Wil-
son, Gochyyev 2020]. Even with the recent advances in oblique bifac-
tor models, it is still a long way to developing a single framework for 
their interpretation and completing the analysis of their psychometric 

5. Conclusion

Table 7. Reliability, variance, and correlation coefficients  
for the cognitive domains model.

Dimension  
(cognitive domain) Knowing Applying Reasoning

Knowing 0.95 0.85

Applying 0.85

Variance 1.37 0.82 0.60

Reliability 0.75 0.74 0.61

Number of items 12 14 4
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properties [Kanonire, Federiakin, Uglanova 2020]. Yet another strate-
gy consists in using higher-order models [Gignac 2008], in which sub-
scores work as indicators of the general factor. However, such models 
do not imply subscore reporting at all, which limits their applicability 
without belittling their academic value.

Subscores are in high demand among practitioners as they not 
only measure the level of performance on a construct but also de-
scribe how exactly it was achieved. To meet this demand, researchers 
involved in international school student assessments use the fact that 
a person’s mean score across all the subscales in a multidimension-
al model is equal to their score in a unidimensional model, provided 
that subscales undergo linear transformation into scales with identical 
numerical parameters (for example, with the mean of 500 and SD of 
100) [Foy, Yin 2015]. This allows researchers to avoid restricting the in-
terpretation to a single model and avoid the use of overparametrized 
psychometric models [Brandt, Duckor, Wilson 2014].

A similar strategy was used to report scores on the PROGRESS-ML 
mathematical literacy test. To provide justification for using the total 
score, the items were tested for unidimensionality using PCA of mod-
el residuals and goodness-of-fit statistics. Results indicate that the test 
can be used as a unidimensional measure, which means that the over-
all mathematical literacy score can be safely reported to end users.

Next, the reportability of subscores in addition to the total score 
was tested. Since mathematical literacy is a complex multicomponent 
construct, its subscores have added value for end users. Subscore re-
portability was assessed to enhance the applied value of test results in 
compliance with the Standards for Educational and Psychological Test-
ing [American Educational Research Association, American Psycholog-
ical Association, National Council on Measurement in Education 2014]. 
Item recalibration in other models — the most suitable approach for 
this measure — showed that subscores obtained on the construct com-
ponents are psychometrically sound and can be reported to end users.

Therefore, the total score is the key result of the test. However, ad-
ditional item recalibrations across the content areas and cognitive do-
mains allow describing how exactly the overall score on the test was 
achieved. In fact, the total score is decomposed into its components. 
Information about correlations among the subscores makes it possi-
ble to use even relatively small scales (e. g. the ‘Reasoning’ scale from 
the model for cognitive domains consists of four items only) with fair-
ly high reliability.

In addition, the contribution of reading skills in the probability of 
item responses was assessed. Expert evaluations were used to meas-
ure the reading intensity of items, allowing to identify the second po-
tential dimension and evaluate its variance and correlation with the 
primary dimension. Reading comprehension was found to make no 
significant contribution to the probability of item responses. The ap-
proach tested in the present study has a great potential for generali-
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zation and can be used to analyze the contribution of nuisance dimen-
sions in other measures.

This article describes the psychometric properties of the 
PROGRESS-ML basic mathematical literacy test. A three-stage anal-
ysis showed that (i) this test can be used as a unidimensional instru-
ment, i. e. its total score can be reported to end users; (ii) reading com-
prehension does not contribute significantly to the probability of item 
responses; and (iii) subscores obtained on test components can be re-
ported to end users in addition to the total score.

The reported study was funded by the Russian Foundation for Basic Research 
(RFBR) as part of research project no. 19–29–14110.
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